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PREFACEPREFACE  
 

  

 Multimedia files in general need plenty of disk space for storage apart from being 

unwieldy for communication purposes and sound files are no exception. Hence 

compression of these files has become a necessity and is a ripe subject for research. 

 The field of signal processing has enjoyed several analysis tools in the past. One of the 

more recent (and, needless to say, more exciting) developments in this field has been the 

emergence of a new transform, THE WAVELET TRANSFORM. In fact, its use is not 

restricted to signal processing alone, but ranges over such diverse fields as image 

processing, communications, mathematics, computer science to name a few. Wavelet 

transforms, in their different guises, have come to be accepted as a set of tools useful for 

various applications. Wavelet transforms are good to have at one's fingertips, along with 

many other, mostly more traditional, tools. 

This thesis considers the application of Wavelet transforms for the compression of human 

speech signals.  It is part of the project on the said topic undertaken by a group of 

undergrad students. The study was by no means exhaustive, which is beyond the purview 

of undergrad study. 

 It can also serve as a guide to understand the working of the software implementation of 

the project, which is provided in the accompanying CD. Note that you need MATLAB 

Version 6 or higher to run the code. Other than this, the software is self-contained in 

terms of help files and source code, which facilitates alteration of the program to suit 

your needs. 

 

Chapter 1 is intended to serve as an introduction. Its main purpose is to define the scope 

of this project.  
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Chapter 2 presents the drawbacks inherent in the Fourier Methods. It is assumed that the 

reader is conversant with the Fourier methods. A specific example is taken wherein the 

shortcomings of Fourier methods become readily evident. 

Chapter 3 presents a detailed introduction to the wavelet analysis.  It tries to compare 

Wavelet transform as a signal processing tool in view of its similarities and differences 

with the Fourier methods. The CONTINUOUS WAVELET TRANSORM (CWT) is 

discussed next. The chapter concludes by demonstrating how the wavelet transform 

overcomes the drawbacks of Fourier methods. 

Chapter 4 discusses the ‘DISCRETE WAVELET TRANSFORM’ (DWT), which is a 

more practical approach than CWT. It also explains an implementation of DWT using 

filtering schemes. 

In chapter 5, the use of Wavelet transform in speech compression is presented. The 

motivation for using wavelets for speech compression is developed, so is the algorithm 

used for the same. 

The pertinent commands of   MATLAB  WAVELET TOOLBOX are explained in brief 

in chapter 6. Specifically, the commands used for achieving compression are discussed 

along with their syntax.  The software implementation is based on these commands. 

However, a detailed discussion of software is relegated to the Appendix lest you get 

inundated with extraneous details of programming. 

 

The conclusion is the subject of chapter 7. Statistical analysis of signals is performed and 

the results recorded. Based on these, inferences are drawn. 

 

As has been pointed out, this discussion is not comprehensive, to compensate for which 

plenty of references have been provided at the end. The accompanying CD contains 

myriad documents that we found on the internet. These should serve as useful guide for 

anyone interested in pursuing the subject beyond the point where we stopped. 

The Appendices are included in the CD  
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1 INTRODUCTION TO AND SCOPE OF THE PROJECT 

 

1.1    Speech Signals 

 

The human speech in its pristine form is an acoustic signal. For the purpose of 

communication and storage, it is necessary to convert it into an electrical signal. This is 

accomplished with the help of certain instruments called ‘transducers’. 

This electrical representation of speech has certain properties. 

1. It is a one-dimensional signal, with time as its independent variable. 

2. It is random in nature. 

3. It is non-stationary, i.e. the frequency spectrum is not constant in time. 

4. Although human beings have an audible frequency range of 20Hz –20kHz, the 

human speech has significant frequency components only upto 4kHz,a 

property that is exploited in the compression of speech. 

 

Digital representation of speech 

With the advent of digital computing machines, it was propounded to exploit the powers 

of the same for processing of speech signals. This required a digital representation of 

speech. To achieve this, the analog signal is sampled at some frequency and then 

quantized at discrete levels. Thus, parameters of digital speech are 

 

1. Sampling rate 

2. Bits per second 

3. Number of channels. 

The sound files can be stored and played in digital computers. Various formats have been 

proposed by different manufacturers for example   ‘.wav’  ‘.au’  to name a few. 

In this thesis, the ‘.wav’ format is used extensively  due to the convenience in recording it 

with ‘Sound recorder’ software, shipped with WINDOWS OS. 
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1.2    Compression – An Overview 

 

In the recent years, large scale information transfer by remote computing and the 

development of massive storage and retrieval systems have witnessed a tremendous 

growth. To cope up with the growth in the size of databases, additional storage devices 

need to be installed and the modems and multiplexers have to be continuously upgraded 

in order to permit large amounts of data transfer between computers and remote 

terminals. This leads to an increase in the cost as well as equipment. One solution to these 

problems is-“COMPRESSION” where the database and the transmission sequence can be 

encoded efficiently. 

 

WHY COMPRESSION? 

Compression is a process of converting an input data stream into another data stream that 

has a smaller size. Compression is possible only because data is normally represented in 

the computer in a format that is longer than necessary i.e. the input data has some amount 

of redundancy associated with it. The main objective of compression systems is to 

eliminate this redundancy. 

When compression is used to reduce storage requirements, overall program execution 

time may be reduced. This is because reduction in storage will result in the reduction of 

disc access attempts. 

With respect to transmission of data, the data rate is reduced at the source by the 

compressor (coder) ,it is then passed through the communication channel and returned to 

the original rate by the expander(decoder) at the receiving end. The compression 

algorithms help to reduce the bandwidth requirements and also provide a level of security 

for the data being transmitted. A tandem pair of coder and decoder is usually referred to 

as codec. 
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APPLICATIONS OF COMPRESSION 

1. The use of compression in recording applications is extremely powerful. The playing 

time of the medium is extended in proportion to the compression factor. 

2. In the case of tapes, the access time is improved because the length of the tape needed 

for a given recording is reduced and so it can be rewound more quickly. 

3. In digital audio broadcasting and in digital television transmission, compression is  

used to reduced the bandwidth needed. 

4.  The time required for a web page to be displayed and the downloading time in case of 

files is greatly reduced due to compression. 

 

COMPRESSION TERMINOLOGY 

q Compression ratio:-  The compression ratio is defined as:- 

 Compression ratio = size of the output stream/size of the input stream 

 

A value of 0.6 means that the data occupies 60% of its original size after compression. 

Values greater than 1 mean an output stream bigger than the input stream. The 

compression ratio can also be called bpb(bit per bit),since it equals the no. of bits in the 

compressed stream needed, on an average, to compress one bit in the input stream. 

 

q Compression factor:- It is the inverse of compression ratio. Values greater than 1 

indicate compression and less than 1 indicates expansion. 
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1.3    Coding Techniques 
 

There are various methods of coding the speech signal 

 

 

 

PCM
DPCM
ADPCM

Time domain coding

Sub-band coding
Transform Coding

Frequency domain coding

WAVEFORM CODING

LPC Vocoders
MBE coder

MPE codecs
RPE codecs
CELP codecs

Hybrid coding

SOURCE CODING

CODING TECHNIQUES

 

 

 

 

 

1.4    Aim, Scope And Limitations of This Thesis 

 

The primary objective of this thesis is to  present the wavelet based method for the 

compression of speech. The algorithm presented here was implemented in MATLAB. 

The said software is provided in the accompanying CD. Readers may find it useful to 

verify the result by running the program.  

 

Since this thesis is an application of wavelets, it was natural to study the basics of 

wavelets in detail. The same procedure was adopted in writing this thesis, as it was felt 
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that without minimal background in wavelets, it would be fruitless, and also inconvenient  

to explain the algorithm. 

 

However, the wavelet itself is an engrossing field, and a comprehensive study was 

beyond the scope of our undergraduate level. Hence, attempt is made only to explain the 

very basics which are indispensable from the compression point of view. This approach 

led to the elimination of many of the   mammoth sized equations and vector analysis 

inherent in the study of  wavelets. 

 

At this stage, it is worthwhile mentioning two quotes by famous scientists 

‘So far as the laws of mathematics refer to reality, they are not certain. And so far as 

they are certain, they do not refer to reality.’  --Albert Einstein 

 

‘As complexity rises, precise statements lose meaning and meaningful statements 

lose precision.’   --Lotfi Zadeh 1 

 

The inclusion of the above quotes is to highlight the fact that simplicity and clarity are 

often the casualties of precision and accuracy, and vice-versa. 

 

In this thesis, we have compromised on the mathematical precision and accuracy to make 

matters simple and clear. An amateur in the field of wavelets might find this work useful 

as it is relieved of most of the intimidating vector analysis and equations, which have 

been supplanted by simple diagrams. However, for our own understanding, we did found 

it necessary, interesting and exciting to go through some literature which deal with the 

intricate details of wavelet analysis, and sufficient references have been provided 

wherever necessary, for the sake of a fairly advanced reader. Some of the literature that 

we perused has been included in the CD. 

 

                                                 
1 Lotfi Zadeh is considered to be the father of Fuzzy Logic 
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The analysis that we undertook for wavelets includes only the orthogonal wavelets. This 

decision was based on the extensive literature we read on the topic, wherein the 

suitability of these wavelets for speech signals was stated.  

 

Another topic that has been deliberately excluded in this work is the concept of MRA, 

which bridges the gap between the wavelets and the filter banks and is indispensable for a 

good understanding of Mallat’s Fast Wavelet Transform Algorithm. Instead, we have 

assumed certain results and provided references for further reading. 

 

Secondly, the sound files that we tested were of limited duration, around 5 seconds. 

Albeit the programs will run for larger files (of course, the computation time will be 

longer in this case), a better approach towards such large files is to use frames of finite 

length. This procedure is more used in real-time compression of sound files, and is not 

presented here. 

 

Encoding is performed using only the Run Length Encoding. The effect of other 

encoding schemes on the compression factor have not been studied. 

 

This thesis considers only wavelets analysis, wherein only approximation coefficients are 

split. There exists another analysis, called wavelet packet analysis, which splits detail 

coefficients. This is not explored in this thesis. 
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2 WEAKNESSES OF FOURIER ANALYSIS 

  

Introduction 

This chapter develops the need and motivation for studying the wavelet transform. 

Historically, Fourier Transform has been the most widely used tool for signal processing. 

As signal processing began spreading its tentacles and encompassing newer signals, 

Fourier Transform was found to be unable to satisfy the growing need for processing a 

bulk of signals. Hence, this chapter begins with a review of Fourier Methods. Detailed 

explanation is avoided to rid the discussion of insignificant details. A simple case is 

presented, where the shortcomings of  Fourier methods is expounded. The next chapter 

concerns wavelet transforms, and shows how the drawback of FT are eliminated. 

 

 

2.1    Review of Fourier Methods 

 

For a continuous –time signal x(t)  , the Fourier Transform  (FT) equations are 

  

     

 

   

Equation (2.1) is the analysis equation and equation (2.2) is the synthesis equation. 

……… … 2.1 

………….2.2
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The synthesis equation suggests that the FT expresses the signal in terms of linear 

combination of complex exponential signal. For a real signal, it can be shown that the FT 

synthesis equation expresses the signal in terms of linear combination of sine and cosine 

terms. A diagrammatic representation of this is as follows: 

 

        

                 fig 2.1: A signal shown as a linear combination of sinusoids (FT method) 

 

The analysis equation represents the given signal in a different form; as a function of 

frequency. The original signal is a function of time, whereas the after the transformation, 

the same signal is represented as a function of frequency. It gives the frequency 

components in the signal. 

              
fig 2.2:Transforming a signal from time-domain to frequency-domain, the 

FOURIER METHOD 

 

Thus the FT is a very useful tool as it gives the frequency content of the input signal. It 

however suffers from a serious drawback. It is explained through an example in the 

sequel. 
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2.2    Shortcomings of FT 

 

EXAMPLE 2.1:  Consider the following 2 signals  

                x1(t) =  sin(2*π*100*t)  0 <= t < 0.1 sec 

               = sin(2*π*500*t)             0.1 <= t < 0.2  sec     

                x2(t) =  sin(2*π*500*t)  0 <= t < 0.1 sec 

               = sin(2*π*100*t)             0.1 <= t < 0.2  sec     

A plot of these signals is shown below. 

(Note: A time interval of 0 to 0.2 seconds was divided into 10,000 points. The sine of 

each point was computed and plotted. Since the signal is of 10,000 points, 16,384 point 

FFT was computed which represents the frequency domain of the signal. This was done 

in MATLAB) 

 

 

 

fig 2.3:  signal  x1(t) and its FFT 
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fig 2.4 : Signal x2(t) and its  FFT 

 

 

The above example demonstrates the drawback inherent in the Fourier analysis of 

signals. It shows that the FT is unable to distinguish between two different signals. The 

two signals have same frequency components, but at different times.  

 

 Thus, the FT is incapable of giving time information of signals. 

 

In general, FT is not suitable for the analysis of a class of signals called NON-

STATIONARY SIGNALS. 
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This led to the search of new tools for analysis of signals. One such tool that was 

proposed was the SHORT TIME FOURIER TRANSFORM (STFT).  This STFT too 

suffered from a drawback1 and was supplanted by WAVELET TRANSFORM. 

 

In the sequel, CONTINUOUS WAVELET TRANSFORM is introduced, and the same 

problem is solved with the help of this transform.  

                                                 
1 see the tutorials on ‘WAVELET TRANSFORMS’ by ROBI  POLIKAR  for a detailed discussion on this. 
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3 INTRODUCTION TO WAVELETS AND THE 

CONTINUOUS WAVELET TRANSFORM (CWT) 

  

INTRODUCTION: 

 

This chapter provides a motivation towards the study of wavelets as a tool for signal 

processing.  The drawbacks inherent in the Fourier methods are overcome with wavelets. 

This fact is demonstrated   here. 

  

It must be reiterated that the discussion in this chapter is by no means comprehensive and 

exhaustive.  The concepts of time-frequency resolution have been avoided for the sake of 

simplicity. Instead, the development endeavors to compare the Wavelet methods with the 

Fourier methods as the reader is expected to be well conversant with the latter. 

 

3.1   Continuous-time Wavelets 

 

Consider a real or complex-valued continuous-time function ψ(t) with the following 

properties 1 

1. The function integrates to zero  

 

i. 0)().( =∫
∞

∞−
tdtψ ………………………… (3.1) 

 
2. It is square integrable or, equivalently, has finite energy: 

                                                 
1A third condition, called admissibility condition also exists. For a detailed study of this topic, the 
reader is referred to the book by Rao (see references, section I,  # 10) 

 



 

13 

 

 

 

∞<∫
∞

∞−
)(.|)(| 2 tdtψ ………………..……..(3.2) 

 

A function is called  mother   wavelet  if it satisfies these two properties. There is an 

infinity of functions that satisfy these properties and thus qualify to be mother wavelet. 

The simplest of them is the  ‘Haar wavelet’. Some other wavelets are Mexican hat, 

Morlet. Apart from this, there are various families of wavelets. Some of the families are 

daubechies family, symlet family, coiflet family etc.  In this thesis, the main stress is 

given on the Daubechies family, which has db1 to db10 wavelets. They are shown in the 

following figure1 . 

                                 

 

 

 

 

                                                 
1 db1 is same as haar wavelet 

Haar wavelet 
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fig 3.1 : Some  wavelet functions. 
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3.2   The Continuous Wavelet Transform (CWT) 

 

 Consider the following figure which juxtaposes a sinusoid and a wavelet 

 

 

 
 

fig 3.2 :  comparing sine wave and a wavelet 

 

 

As has already been pointed out, wavelet is a waveform of effectively limited duration 

that has an average value of zero. 

 

Compare wavelets with sine waves, which are the basis of Fourier analysis. 

 

Sinusoids do not have limited duration -- they extend from minus to plus infinity. And 

where sinusoids are smooth and predictable, wavelets tend to be irregular and 

asymmetric. 
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Fourier analysis consists of breaking up a signal into sine waves of various Frequencies 

(fig 2.1). Similarly, wavelet analysis is the breaking up of a signal into shifted and scaled 

versions of the original (or mother) wavelet. Compare the following figure with fig :2.1 . 

 

      

  fig 3.3   :figure demonstrating the decomposition of a signal into wavelets 

 

The above diagram suggests the existence of a synthesis equation to represent the original 

signal as a linear combination of wavelets which are the basis function for wavelet 

analysis (recollect that in Fourier analysis, the basis functions are sines and cosines). This 

is indeed the case.  The wavelets in the synthesis equation are multiplied by scalars. To 

obtain these scalars, we need an analysis equation, just as in the Fourier case. 

 

We thus have two equations, the analysis and the synthesis equation. They are stated as 

follows: 

1. Analysis equation or CWT equation:1 

 

)(.)(*
||

1
.)(),( td

a
bt

a
tfbaC

−
= ∫

∞

∞−

ψ
 ………………..…  (3.3) 

 

2. Synthesis equation or ICWT: 

 

                                                 
1 The  ‘*’ indicates complex conjugate. 
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)().(.)(
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1
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||
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)(

2
bdad

a
bt

a
baC

aK
tf

ba

−
= ∫∫

∞

−∞=

∞

−∞=

ψ
………….(3.4) 

 

 

The basis functions in both Fourier and wavelet analysis are localized in frequency 

making mathematical tools such as power spectra (power in a frequency interval) useful 

at picking out frequencies and calculating power distributions. 

 

The most important difference between these two kinds of transforms is that individual 

wavelet functions are localized in space. In contrast Fourier sine and cosine functions   

are non-local and are active for all time t. 

 

This localization feature, along with wavelets localization of frequency, makes many 

functions and operators using wavelets “sparse”, when transformed into the wavelet 

domain. This sparseness, in turn results in a number of useful applications such as data 

compression, detecting features in images and de-noising signals. 

 

Returning to the equations  

 The quantities  ‘a’ and ‘b’ appearing in the above  equations represent  respectively the   

scale and  shift of mother  wavelet.   

The wavelet transform of a signal f(t) is the family C(a,b), given by the analysis equation. 

It depends on two indices a and b. From an intuitive point of view, the wavelet 

decomposition consists of calculating a "resemblance index" between the signal and the 

wavelet located at position b and of scale a. If the index is large, the resemblance is 

strong, otherwise it is slight. The indexes C(a,b) are called coefficients. The dependence 

of these coefficients on both  ‘a’ and ‘b’ is responsible for the wavelet transform 

K is a constant; it depends on the wavelet 
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preserving time and frequency information. These quantities are explained in the 

following sections. 

 

3.3   The Scale ‘a’ 

 

Simply put  ‘Scaling a wavelet means stretching (or compressing) it ‘ .To go beyond 

colloquial descriptions such as "stretching," we introduce the scale factor, often denoted 

by the letter ‘a’. If we're talking about sinusoids, for example, the effect of the scale 

factor is very easy to see: 

 

      
fig 3.4 : Effect of scaling on sine waves 

 

The scale factor works exactly the same with wavelets. The smaller the scale factor, the 

more "compressed" the wavelet and vice versa. 

 

(see fig 3.5) 
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It is clear from the diagrams that, for a sinusoid sin(ωt), the scale factor is related 

(inversely) to the radian frequency  ω . Similarly, with wavelet analysis, the scale is 

related to the frequency of the signal. 

 

          

 

 
fig 3.5: Effect of scaling  on  wavelets 

 

Thus the higher scales correspond to the most "stretched" wavelets. The more stretched 

the wavelet, the longer the portion of the signal with which it is being compared, and thus 

the coarser the signal features being measured by the wavelet coefficients. 

 

                 

 

 
fig 3.6 : Figure demonstrating the effect of stretching the wavelet on the length of 

the signal  being compared 
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Thus, there is a correspondence between wavelet scales and frequency as revealed 

by wavelet analysis: 

Low scale ‘a’ =>Compressed wavelet =>Rapidly changing details =>High Frequency (ω) 

. 

High scale ‘a’ =>Stretched wavelet =>Slowly changing, coarse features=>low freq (ω) 

The exact relation between frequency and scale is given in section 3.5 

 

3.4   Shift ‘b’ 

 

Shifting a wavelet simply means delaying (or hastening) its onset. Mathematically, 

delaying a function f(t) by  ‘b’  is represented by f(t-b) : 

 

 
                                            fig 3.7 : Shifting a wavelet 

 

 3.5   Five Easy Steps to a Continuous Wavelet Transform 

 

The continuous wavelet transform is the sum over all time of the signal multiplied by 

scaled, shifted versions of the wavelet. This process produces wavelet coefficients that 

are a function of scale and position. 

It's really a very simple process. In fact, here are the five steps of an easy recipe for 

creating a CWT: 

1. Take a wavelet and compare it to a section at the start of the original signal. 
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2. Calculate a number, C, that represents how closely correlated the wavelet is 

with this section of the signal. The higher C is, the more the similarity. More 

precisely, if the signal energy and the wavelet energy are equal to one, C may be 

interpreted as a correlation coefficient. 

 

Note that the results will depend on the shape of the wavelet you choose. 

 
fig 3.8 : Step #2 for calculating CWT 

 

3. Shift the wavelet to the right and repeat steps 1 and 2 until you've covered the 

whole signal. 

 
fig 3.9: Step #3 for calculating CWT 

 

4. Scale (stretch) the wavelet and repeat steps 1 through 3. 
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fig 3.10 : Step # 4 for calculating CWT 

 

 

5. Repeat steps 1 through 4 for all scales. 

 

When you're done, you'll have the coefficients produced at different scales by different 

sections of the signal. The coefficients constitute the results of a regression of the original 

signal performed on the wavelets. 

 

How to make sense of all these coefficients? You could make a plot on which the x-axis 

represents position along the signal (time), the y-axis represents scale, and the color at 

each x-y point represents the magnitude of the wavelet coefficient C. An example is 

shown below (black represents low magnitude and white is high magnitude) 
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fig 3.11 : A typical scalogram (for demonstration only) 

 

 

3.6   How to Connect Scale to Frequency? 

The answer can only be given in a broad sense, and it's better to speak about the pseudo-

frequency corresponding to a scale. 

A way to do it is to compute the center frequency Fc of the wavelet and to use the 

following relationship: 

                                                ……………………(3.5) 

where, 
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a is a scale. 

∆ is the sampling period. 

Fc is the center frequency of a wavelet in Hz. 

Fa is the pseudo-frequency corresponding to the scale a, in Hz. 

 

The idea is to associate with a given wavelet a purely periodic signal of frequency Fc, i.e. 

to approximate the wavelet by a sinusoid. The frequency maximizing the FFT of the 

wavelet modulus is Fc.  

 

The following figures display the plot of the wavelet along with the associated 

approximation based on the center frequency. 

 

 
fig 3.12 : Relation between scale and sinusoidal frequency for some wavelet 
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As you can see, the center frequency-based approximation captures the main wavelet 

oscillations. So the center frequency is a convenient and simple characterization of the 

leading dominant frequency of the wavelet. 

 

If we accept to associate the frequency Fc to the wavelet function, then when the wavelet 

is dilated by a factor a, this center frequency becomes Fc / a. Lastly, if the underlying 

sampling period is ∆, it is natural to associate to the scale a the frequency: 

      
 

3.7   Example 2.1 revisited  

 

In chapter 2 the weakness of FT was demonstrated with an example. We now consider 

the same example, and show how wavelet analysis distinguishes between the 2 different 

signals and also gives their frequency content. The 2 signals are repeated here for 

convenience. 

                x1(t) =  sin(2*π*100*t)  0 <= t < 0.1 sec 

               = sin(2*π*500*t)             0.1 <= t < 0.2  sec     

                x2(t) =  sin(2*π*500*t)  0 <= t < 0.1 sec 

               = sin(2*π*100*t)             0.1 <= t < 0.2  sec     

The following figures show the signals along with their wavelet scalogram. Note the 

scalograms of these 2 signals are entirely differently, enabling the wavelet transform to 

distinguish between the 2 signals. 
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fig 3.13 : x1(t) and its scalogram 
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fig 3.14 : x2(t) and its scalogram 

 

The interpretation of the above scalograms  to determine the exact frequency 

components has been relegated to appendix. For now, it suffices to say that 

WAVELET TRANSFORM IS A SUITABLE TOOL FOR THE ANALYSIS OF NON-

STATIONARY SIGNAL, AS IS EVIDENCED BY THE ABOVE TWO DIAGRAMS. 
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The computation of coefficients C(a,b)  for a continuum of  values of  ‘a’ and ‘b’ to get 

the continuous wavelet transform is  impractical. The next chapter deals with a more 

practical quantity, the DISCRETE WAVELET TRANSFORM (DWT). 

 

 Before proceeding, the reader is well advised to have a strong foundation of CWT.  A 

detailed treatment can be found in the following literature. 

1. Books: See # 10 in references. 

2. Tutorial by Robi Polikar, in particular, tutorial 3(# 2 in reference in the section 

II) 

3. From section III, review the material given in URLs  4 and 5. 
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4 THE DISCRETE WAVELET TRANSFORM (DWT) 

 

INTRODUCTION  

Calculating wavelet coefficients at every possible scale (for continuous WT) is a fair 

amount of work, and it generates an awful lot of data. What if we choose only a subset of 

scales and positions at which to make our calculations? 

 

It turns out, rather remarkably, that if we choose scales and positions based on powers of 

two -- so-called dyadic scales and positions  -- then our analysis will be much more 

efficient and just as accurate. We obtain such an analysis from the discrete wavelet 

transform (DWT). 

 

An efficient way to implement this scheme using filters was developed in 1988 by 

Mallat. The Mallat algorithm is in fact a classical scheme known in the signal processing 

community as a two-channel subband coder. This very practical filtering algorithm yields 

a fast wavelet transform -- a box into which signal passes, and out of which wavelet 

coefficients quickly emerge. 

 

A discussion of MRA (Multi-resolution analysis or approximation) bridges the gap 

between wavelets and the filter-bank implementation of DWT explained in this chapter. 

 

Discussion of MRA is beyond the scope of this thesis. Interested readers are referred 

to                  

1. The book by Rao (references, section I, #10) 

2. Tutorials 3 and 4 by Robi Polikar (references, section II , #2) 

3. Papers by S.Mallat1  (References, section II, # 5 &6) 

4. References, section III, #4 

                                                 
1 We wish to mention here that S.Mallat is one of the brightest stars in the field of wavelets. His 
papers have revolutionized the computation of DWT 
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We directly begin our discussion with the formula of DWT and then veer towards the 

decomposition of signal into approximation and detail coefficients. The filter banks used 

to achieve this are also discussed. The reverse process, i.e. reconstruction of signal from 

the coefficients is described later. Examples of haar, and db10 are used to demonstrate 

the filter coefficients, frequency response of the low and high pass decomposition and 

reconstruction filters. 

 

This chapter forms the basis for the next chapter, which discusses compression. 

 

4.1   DWT   defined mathematically 

 

The Discrete Wavelet Transform (DWT) involves choosing scales and 

positions based on powers of two- the so called dyadic scales and 

positions. The mother wavelet is rescaled or “dilated” by powers of two and 

translated by integers. Specifically, a function f(t) ∈ L2 (R) (defines space of 

square integrable functions) can be represented as 

 

            

∑∑ ∑
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         ………….(4.1) 

 

 

The function  ψ(t) is known as the mother wavelet, while φ(t) is known as 

the scaling function. The set of functions 
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},,;|)..2(2),2(2{ ZLkjLjktkt jjLL ∈≤−− −−−− ψφ  where Z is the set of 

integers, is an orthonormal basis for L 2 (R). 

 

The numbers a(L, k) are known as the approximation coefficients at scale L, while       

d(j,k) are known as the detail coefficients at scale j. 

 

These approximation and detail coefficients can be expressed as  

               ∫
∞

∞−

− −= )().2(.)(
2

1
),( tdkttfkLa L

L
φ  ………...(4.2) 

 

     )(.)2(.)(
2
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j
−= −

∞

∞−
∫ ψ  ………...(4.3) 

 

The above 2 equations give a mathematical relationship to compute the approximation 

and detail coefficients. 

This procedure is seldom adopted. A more practical approach is to use Mallat’s Fast 

Wavelet Transform algorithm. The Mallat algorithm for discrete wavelet transform 

(DWT) is, in fact, a classical scheme in the signal processing community, known as a two 

channel subband coder using conjugate quadrature filters or quadrature mirror filters 

(QMF). It is developed in the following sections. 
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4.2   One-Stage Filtering: Approximations and Details 

 

For many signals, the low-frequency content is the most important part. It is what gives 

the signal its identity. The high-frequency content, on the other hand, imparts flavor or 

nuance. Consider the human voice. If you remove the high-frequency components, the 

voice sounds different, but you can still tell what's being said. However, if you remove 

enough of the low-frequency components, you hear gibberish. 

 

In wavelet analysis, we often speak of approximations and details. The approximations 

are the high-scale, low-frequency components of the signal. The details are the low-scale, 

high-frequency components. 

 

The filtering process, at its most basic level, looks like this: 

 

 

fig 4.1 : One stage filtering scheme producing the approximation and detail components 

of the signal 

 

The original signal, S, passes through two complementary filters and emerges as two 

signals. 
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Unfortunately, if we actually perform this operation on a real digital signal, we wind up 

with twice as much data as we started with. Suppose, for instance, that the original signal 

S consists of 1000 samples of data. Then the resulting signals will each have 1000 

samples, for a total of 2000. 

 

These signals A and D are interesting, but we get 2000 values instead of the 1000 we had. 

There exists a more subtle way to perform the decomposition using wavelets. By looking 

carefully at the computation, we may keep only one point out of two in each of the two 

2000-length samples to get the complete information. This is the notion of 

downsampling. We produce two sequences called cA and cD. 

 

 
 

fig 4.2: Producing approximation and detail coefficients at the first level 

 

The process on the right, which includes downsampling, produces DWT coefficients. 

To gain a better appreciation of this process, let's perform a one-stage discrete wavelet 

transform of a signal. Our signal will be a pure sinusoid with high-frequency noise added 

to it. 

Here is our schematic diagram with real signals inserted into it: 
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Fig4.3:Demonstration of one-stage filtering scheme for producing approximation and 

detail coefficient. 

 

 

Notice that the detail coefficients cD are small and consist mainly of a high-frequency 

noise, while the approximation coefficients cA contain much less noise than does the 

original signal. 

 

Note: You may observe that the actual lengths of the detail and approximation coefficient 

vectors are slightly more than half the length of the original signal. This has to do with 

the filtering process, which is implemented by convolving the signal with a filter. The 

convolution "smears" the signal, introducing several extra samples into the result. 

 

In this section, we considered only one-stage decomposition of the signal into cA and cD  

coefficient. This process can be repeated to get multiple-level decomposition, discussed 

next. 
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4.3   Multiple-Level Decomposition: 
The decomposition process can be iterated, with successive 

approximations being decomposed in turn, so that one signal is broken 

down into many lower resolution components. This is called the wavelet 

decomposition tree. 

 

                         
 

Looking at a signal's wavelet decomposition tree can yield valuable 

information. 

 

                          

 
           fig 4.5 : Multiple level decomposition of a signal 

 Fig 4.4: Multiple 
level 
 decomposition tree 
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Number of Levels: 

 Since the analysis process is iterative, in theory it can be continued indefinitely. In 

reality, the decomposition can proceed only until the individual details consist of a single 

sample or pixel. In practice, you'll select a suitable number of levels based on the nature 

of the signal, or on a suitable criterion such as entropy. 

 

 

 

Thus the FAST WT ALGORITHM can be stated as: 

Given a signal s of length N, the DWT consists of log2N stages at most. 

Starting from s, the first step produces two sets of coefficients: approximation 

coefficients cA1, and detail coefficients cD1. These vectors are obtained 

by convolving s with the low-pass filter Lo_D for approximation, and with 

the high-pass filter Hi_D for detail, followed by dyadic decimation. 

 

The next step splits the approximation coefficients cA1 in two parts using 

the same scheme, replacing s by cA1 and producing cA2 and cD2, and so 

on. 

 

 

Now that we have seen the decomposition of a signal into wavelet 

(approximation and detail) coefficients, it is natural to ask whether the 

reverse is possible, i.e., is it possible to generate the original signal back 

from the coefficients, and if yes, how to achieve this. 
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Forturnately, there does exist a method to do it, and it is very similar to the 

one used for decomposition. The next few sections demonstrate this. 

 

4.4   Wavelet Reconstruction 
 

We've learned how the discrete wavelet transform can be used to analyze, 

or decompose, signals and images. This process is called decomposition or 

analysis. The other half of the story is how those components can be 

assembled back into the original signal without loss of information. This 

process is called reconstruction, or synthesis. The mathematical 

manipulation that affects synthesis is called the inverse discrete wavelet 

transform (IDWT). 

 

To synthesize a signal, we reconstruct it from the wavelet coefficients: 

 

   
 

Where wavelet analysis involves filtering and downsampling, the wavelet 

reconstruction process consists of upsampling and filtering. Upsampling is 

the process of lengthening a signal component by inserting zeros between 

samples: 

 

Fig 4.6: Scheme 
for 
reconstructing 
signal from 
wavelet 
coefficients 
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            fig 4.7 : The process of Upsampling 

 

4.5    Reconstruction Filters 

 

The filtering part of the reconstruction process also bears some discussion, 

because it is the choice of filters that is crucial in achieving perfect 

reconstruction of the original signal. 

The downsampling of the signal components performed during the decomposition phase 

introduces a distortion called aliasing. It turns out that by carefully choosing filters for the 

decomposition and reconstruction phases that are closely related (but not identical), we 

can "cancel out" the effects of aliasing. 

 The low-and high pass decomposition filters (L and H), together with their 

associated reconstruction filters (L' and H'), form a system of what is called 

quadrature mirror filters: 
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        Fig 4.8: Decomposition and reconstruction  filters illustrated 

 

 

4.6    Reconstructing Approximations and Details 

 

We have seen that it is possible to reconstruct our original signal from the 

coefficients of the approximations and details. 

 

 
 

 

 

It is also possible to reconstruct the approximations and details themselves 

from their coefficient vectors. As an example, let's consider how we would 

reconstruct the first-level approximation A1 from the coefficient vector cA1. 

Fig 4.9: 
Reconstruct
ion of 
signal from 
approximat
ion and 
details. 



 

40 

 

 

 

We pass the coefficient vector cA1 through the same process we used to 

reconstruct the original signal. However, instead of combining it with the 

level-one detail cD1, we feed in a vector of zeros in place of the detail 

coefficients vector: 

 

 

 
 

 

The process yields a reconstructed approximation A1, which has the same 

length as the original signal S and which is a real approximation of it. 

 

Similarly, we can reconstruct the first-level detail D1, using the analogous 

process: 

 

 
 

Fig 4.10: 
Obtaining the 
first level 
approximatio
n  of the 
signal. 

Fig 4.11: Obtaining the 
first level detail of the 
signal 
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The reconstructed details and approximations are true constituents of the 

original signal. In fact, we find when we combine them that: 

 

  A1 + D1 =  S        ……………………(4.4) 

 

Note that the coefficient vectors cA1 and cD1 -- because they were 

produced by downsampling and are only half the length of the original 

signal -- cannot directly be combined to reproduce the signal. It is 

necessary to reconstruct the approximations and details before combining 

them. 

 

Extending this technique to the components of a multilevel analysis, we 

find that similar relationships hold for all the reconstructed signal 

constituents. That is, there are several ways to reassemble the original 

signal: 

 

 
fig 4.12 : Relation between the signal and its components 

 

 

4.7    Multistep Decomposition and Reconstruction 
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A multistep analysis-synthesis process can be represented as: 

 

 
 

fig 4.13 : Multiple level analysis-synthesis process 

 

 

This process involves two aspects: breaking up a signal to obtain the 

wavelet coefficients, and assembling the signal from the coefficients. 

 

We've already discussed decomposition and reconstruction at some length. 

Of course, there is no point breaking up a signal merely to have the 

satisfaction of immediately reconstructing it. We may modify the wavelet 

coefficients before performing the reconstruction step. 

 

We perform wavelet analysis because the coefficients thus obtained have 

many known uses, de-noising and compression being foremost among 

them. 
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But wavelet analysis is still a new and emerging field. No doubt, many 

uncharted uses of the wavelet coefficients lie in wait. 

 

4.8    Haar and db2 decomposition and reconstruction filters 

 

Having studied the implementation of DWT with the help of filter banks, it is natural to 

ask:  how are these filters implemented ? 

 

These filters are like any other FIR filters, characterized by an impulse response. The 

design of these filters is beyond the scope of this thesis. In this section we just present the 

filter coefficients of the 4 filters namely, the low-pass and high-pass decomposition and 

reconstruction filters for the haar and db2 wavelets.  These values are standardized and 

have been plotted using MATLAB. Along with this, frequency response of these filters 

is also provided. 

1. haar : 

             The filter coefficients are  

a) Low pass decomposition filter: h(n)={ 0.7071 , 0.7071} 

b) High pass decomposition filter: h(n)={ -0.7071 , 0.7071} 

c) Low pass reconstruction filter: h(n)={ 0.7071 , 0.7071} 

d) High pass reconstruction filter: h(n)={ 0.7071 ,  -0.7071} 
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wavelet function    scaling function 

    

           

 
low pass decomposition/reconstruction filter frequency  response 

 

 High pass decomposition/reconstruction filter frequency (magnitude) 
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Note that   the reconstruction filters are same as decomposition filters for the low-

pass filters. For the high-pass filters, the magnitude response will be same, as is 

evidenced from the diagrams. 

 

 

2. db2 

The filter coefficients are  

a) Low pass decomposition filter: h(n)={ -0.1294,0.2241,0.8365,0.4830} 

b) High pass decomposition filter: h(n)={-0.4830,0.8365,-0.2241,-0.1294 } 

c) Low pass reconstruction filter: h(n)={ 0.4830,0.8365,0.2241,-0.1294} 

d) High pass reconstruction filter: h(n)={-0.1294,-0.2241,0.8365, -0.4830} 

    

   wavelet function   scaling function 
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low pass 
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reconst-
ruction 
filter 

High pass 
decompo
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filter 
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high pass reconstruction filter 
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5 WAVELETS AND SPEECH COMPRESSION 

 
INTRODUCTION 

The idea behind signal compression using wavelets is primarily linked to the relative 

scarceness of the wavelet domain representation for the signal. Wavelets concentrate 

speech information (energy and perception) into a few neighbouring coefficients. 

Therefore as a result of taking the wavelet transform of a signal, many coefficients will 

either be zero or have negligible magnitudes.  

. 

Another factor that comes into picture is taken from psychoacoustic studies. Since our 

ears are more sensitive to low frequencies than high frequencies and our hearing 

threshold is very high in the high frequency regions, we used a method for compression 

by means of which the detail coefficients (corresponding to high frequency components) 

of wavelet transforms are thresholded such that the error due to thresholding is inaudible 

to our ears. 

Since some of the high frequency components are discarded, we should expect a 

smoothened output signal, as is shown in the following figure: 



 

49 

 

 

 
 

fig 5.1 : Effect of compression (smoothening of the signal) 

 

In summary, the notion behind compression is based on the concept that the regular 

signal component can be accurately approximated using the following elements: a small 

number of approximation coefficients (at a suitably chosen level) and some of the detail 

coefficients 

 

Data compression is then achieved by treating small valued coefficients as insignificant 

data and thus discarding them. The process of compressing a speech signal using 

wavelets involves a number of different stages, each of which is discussed below. 
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5.1    Choice of Wavelet 

 

The choice of the mother-wavelet function used in designing high quality speech coders 

is of prime importance. Several different criteria can be used in selecting an optimal 

wavelet function. The objective is to minimize reconstructed error variance and maximize 

signal to noise ratio (SNR). In general optimum wavelets can be selected based on the 

energy conservation properties in the approximation part of the wavelet coefficients. A 

suitable criterion for selecting optimum mother wavelets is related to the amount of 

energy a wavelet basis function can concentrate into the level 1 approximation 

coefficients. 

In chapter 7, several experiments are conducted and a suitable wavelet is suggested. 

 

5.2    Wavelet Decomposition: 

 

Wavelets work by decomposing a signal into different resolutions or frequency bands, 

and this task is carried out by choosing the wavelet function and computing the Discrete 

Wavelet Transform (DWT). Signal compression is based on the concept that selecting a 

small number of approximation coefficients (at a suitably chosen level) and some of the 

detail coefficients can accurately represent regular signal components. Choosing a 

decomposition level for the DWT usually depends on the type of signal being analyzed or 

some other suitable criterion such as entropy. For the processing of speech signals 

decomposition up to scale 5 is adequate, with no further advantage gained in processing 

beyond scale 5. This fact is derived from the experiments described later in chapter 7. 

 

5.3    Truncation of Coefficients: 

 

After calculating the wavelet transform of the speech signal, compression involves 

truncating wavelet coefficients below a threshold. From the experiments that we 

conducted, we found that most of the coefficients have small magnitudes. Speaking in 
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general terms, more than 90% of the wavelet coefficients were found to be insignificant, 

and their truncation to zero made an imperceptible difference to the signal. This means 

that most of the speech energy is in the high-valued coefficients, which are few. Thus the 

small valued coefficients can be truncated or zeroed and then be used to reconstruct the 

signal. 

 

 Two different approaches are available for calculating thresholds: 

 

 1.Global threshold: 

 It involves taking the wavelet expansion of the signal and keeping the 

largest absolute value coefficients. In this case you can manually set a 

global threshold, a compression performance or a relative square norm 

recovery performance. Thus, only a single parameter needs to be 

selected. The coefficient values below this value should be set to zero, 

to achieve compression. 

 The following figure shows the setting of global threshold for a typical speech signal. 

In this figure, the X-axis represents the coefficient values. (Since the signal samples are 

normalized to 1 in MATLAB, the coefficient values too are normalized and the 

maximum value is one). The black (dark) vertical line moves to right or left, thereby 

changing the threshold. The intersection of this line with green line indicates the 

percentage of zero coefficients below this threshold. Its intersection with the red line 

indicates the percentage of signal energy retained after truncating these coefficients to 

zero 
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2. Level dependent thresholding: This approach consists of applying visually 

determined level dependent thresholds to each decomposition level in the Wavelet 

Transform 

 

The following figure shows the level-dependent thresholding. The truncation of 

insignificant coefficients can be optimized when such a  level dependent thresholding is 

used 

Fig 5.2:. 
Setting a global 
threshold 
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fig 5.3 : level dependent threshold 
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5.4    Encoding 

 

Signal compression is achieved by first truncating small-valued coefficients and then 

efficiently encoding them. 

One way of representing the high-magnitude coefficients is to store the coefficients along 

with their respective positions in the wavelet transform vector.  

Another approach is the Run Length Encoding (RLE) wherein, the consecutive zero 

valued coefficients are replaced with two bytes. One byte to indicate a sequence of zeros 

in the wavelet transforms vector and the second byte representing the number of 

consecutive zeros. In the thesis, we have used a slightly different approach. The vector of 

wavelet coefficient, after truncation, is encoded, and is replaced by 2 vectors. One vector 

contains only the significant coefficients, without any zero values between them. The 

other vector stores the starting position of a string of zeros and the number of zeros in the 

string.  Thus 2 bytes are needed for every string of zeros. 

 

5.5    Performance Measures 

 

1.Compression factor: It is the ratio of the original signal to the compressed signal. Of 

course, for the compressed signal we have to take into account all the values that would 

be needed to completely represent the signal. As has been explained in the previous 

section, this thesis implements encoding using a modification of RLE wherein 2 vectors 

are produced, we must take into account the combined length of these 2 vectors. 

 

2.Retained signal energy: This  indicates the amount of energy retained in the 

compressed signal as a percentage of the  energy of original signal. 

 

 When compressing using orthogonal wavelets, the Retained energy in percentage   is 

defined by: 
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3. Signal to noise ratio (SNR): This value gives the quality of reconstructed signal.    

Higher the value, better. It is given by: 

 

                                           )(log10
2

2

10

e

xSNR
σ
σ=  

 

where σx   and σe   are respectively the mean square of the speech signal and the mean 

square difference between the original and reconstructed signals.   

 

 

4. Percentage of zero coefficient: It is given by the following relation: 

                     

                          

tscoefficienofNumber
iondecompositcurrenttheofzerosofnumber )(*100

 

 

5.Signal energy in the first level approximation: This quantity helps in the selection of 

appropriate mother wavelet for compression. The higher the amount of energy in the first 

level approximation, better is the wavelet for compression of that signal. 
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These parameters discussed in this section are calculated and displayed as output in the 

software implementation of this work. The experimentation carried out in chapter 7 is 

based entirely on this. 

 

Before we proceed, we present the flowchart for performing compression-reconstruction 

using wavelet method: 
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SPEECH  COMPRESSION-RECONSTRUCTION   FLOWCHART 

 

 

 START 

Read a 
sound file 

Perform wavelet 
decomposition of the 
signal at the specified 

level 

Select a threshold and 
truncate the coefficients 
below this threshold to 

zero 

Use a suitable encoding 
scheme to get rid of the 
truncated coefficients 

Storage / 
Transmission 

Decode the 
stored/received 

signal 

Reconstruct the 
samples of speech 

signal from the 
wavelet 

Construct the sound 
file from the 

samples 

END 
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6 IMPLEMENTATION IN MATLAB  

 

INTRODUCTION 

Having studied the steps needed to perform speech compression using the wavelet 

approach, it now remains to implement it. MATLAB version 6.1 has numerous 

functions and graphical tools to achieve this. These have been exploited in our study of 

wavelet and also in the implementation of software for speech compression. 

 

Recollect that the primary objective was to be able to store a sound file in the  .wav 

format as a compressed file occupying lesser disk space. 

 

Hence this chapter explains each step in the process, from reading a .wav file to the final 

saving of another file of smaller size, but containing sufficient data to reconstruct the 

original sound file, with imperceptible degradation. 

 

This chapter is organized as an algorithm, with each section representing a step. The 

MATLAB functions used in the various steps are elaborated within the section. 

 

 

6.1    Reading a sound file 

 

To compress a sound file, we first need to take its samples into a vector. Let  ‘y’ be the 

vector. The command is 

 

         [y,fs,bps] = wavread(‘path of the file’)[y,fs,bps] = wavread(‘path of the file’)  ;;  
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This command stores the samples of the sound file in the vector y.  The term  ‘fs’ stores 

the sampling frequency of the file and ‘bps’ is the bits per sample. These 2 values are 

needed to reconstruct the  .wav file using  ‘wavwrite’ function. 

 

6.2    Performing wavelet decomposition 

 

The vector ‘y’ from the previous step is now decomposed using DWT into approximation 

and detail coefficients at various levels. The command is  

 

                [[C,L] = wavedec(y,N,'wname');C,L] = wavedec(y,N,'wname');  

 

where,       NN    = number of decomposition levels. 

     ‘wname’‘wname’  =  name of the wavelet 

 

The output decomposition structure contains the wavelet decomposition vector C and 

the bookkeeping vector L. The structure is organized as in the level-3 decomposition 

example shown in fig 6.1: 
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fig 6.1 : Contents of C and L vectors 
 

 

6.3    Perform Compression 

 

The coefficient vector ‘C’ computed in the previous step will now be compressed, i.e. the 

insignificant detail coefficients will be truncated to zero. 

 

Note that only detail coefficients will be truncated. Approximation coefficients will not 

be affected. 

The syntax is: 

 

[XC,CXC,LXC,PERF0,PERFL2] = wdencmp('gbl',C,L,wlet,                                            [XC,CXC,LXC,PERF0,PERFL2] = wdencmp('gbl',C,L,wlet,                                            

decomplevel,thr,sodecomplevel,thr,sorh,keepapp);rh,keepapp);  
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The various parameters used are described as follows: 

 

1. Inputs (quantities on the right hand side): 

 

gbl Indicates global thresolding. Used ‘lvd’ for level dependent 

thresholding 

C Wavelet coefficient vector (computed in step 2) 

L Book-keeping vector (computed in step 2) 

wlet Wavelet function used for decomposition in step 2 

decomplevel The number of decomposition levels 

thr The threshold value selected 

sorh It indicates whether soft or hard thresholding is used. We have used 

hard thresholding throughout. 

keepapp Keep approximation coefficients? Value of ‘1’ indicates that 

approximation coefficients are left unscathed in the truncation 

operation. 

 

 

 

2. Outputs (quantities on left hand side): 

 

XC Gives the reconstructed signal after compression. 

CXC Truncated coefficients vector 

LXC Book keeping vector 

PERF0 % of zero coefficients 

PERF2 Retained signal energy (in  %) 
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6.4    Encode the CXC vector  

 

An algorithm was designed and then implemented in MATLAB for encoding the 

coefficient vector. The program (M-file) was saved as  ‘encode1.m’.   The logic works as 

follows: 

 

In the CXC vector, there are long strings of zeros. This CXC is replaced by 2 vectors, ‘y’ 

and ‘posnum’. The vector ‘y’ will store, in contiguous positions, only the non-zero 

members of CXC. 

 

The ‘posn`um’ vector will store 2 numbers for each string of zeros, the first number 

storing the index of first zero of the stream of zeros, and the 2nd number storing the 

number of contiguous-zeros in the stream. 

 

Example: Let    CXC = [1,0,0,0,0,0,2,3,0,0,6,0,0,0,7] 

 

Use the command  

     [y,posnum] = encode1(CXC)[y,posnum] = encode1(CXC)  ;;  

 

When you give this command, 

 

                    y =  [1,2,3,6,7] 

         posnum = [2,5,9,2,12,3] 
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6.5    Decode  

 

It is the reverse of ‘encode1’. The M-file is ‘decode1.m’ and the command is 

     Rx  = decode1(y,posnum,N);Rx  = decode1(y,posnum,N);  

where, 

             Rx = reconstructed coefficient vector. Note this Rx =CXC of section 6.4. 

             N   = Length of   vector C (or CXC).   

 

 

6.6    Reconstructing the signal from wavelet coefficients 

 

The signal can be reconstructed   from wavelet coefficient at any level using ‘waverec’ 

command. The syntax is 

 

Y = Y = waverec(C,L,’wavelet’);(C,L,’wavelet’);  

 

 Note that in this case, perfect reconstruction is being performed, since ‘C’ is used. In 

actual compression, it is the  ‘Rx’ vector that is used in place of  ‘C’; 

 

6.7    Speech Comparison GUI 

 

The  ‘SPEECH COMPRESSION GRAPHICAL USER INTERFACE (GUI)’ included in 

the CD has the aforementioned commands at its core. The design of GUI is beyond the 

scope of thesis and depends to a great extend on the programming skills and familiarity 

of the user with MATLAB. The help documentation of MATLAB is a very good 

starting point for a beginner. 
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7 RESULTS 

  
Foreword: 

In chapter 5, many key issues regarding the compression were merely stated. Primary 

among them were the choice of wavelets and the number of decomposition levels. In this 

chapter, we conducted a series of statistical analysis and arrived at some results which 

can serve as a guide for selection of these parameters. 

 

We have also attempted to study the dependence of compression on the sampling 

frequency of the signal. Since human speech has significant components only upto 4khz, 

according Nyquist rule, minimum sampling frequency required is 8kHz which is also the 

minimum required representation for the signal. Increasing the sampling frequency 

introduces redundant information, which will give more compression.  Readers are 

cautioned against being overzealous upon getting very high compression factors when 

using signals with higher sampling rates. Such results are not indicative of general trend. 

 

We have considered only haar, daubechies and the symlet families in our study. The 

biorthogonal wavelets have been completely excluded. 

 

We performed a series of trial and errors on a few signals and arrived at an acceptable 

figure for SNR (signal to noise ratio). We found this value to be 10dB. However, to have 

safe margin, we took 12dB as the minimum SNR for the reconstructed signal for getting 

imperceptible degradation. 

The threshold values used are global, as explained in section 5.3. We used the 

MATLAB function  ‘ddencmp’ to compute the threshold for the signal. However this 

figure gives very conservative results. Hence we multiply it by some scalar to increase 

the compression factor. Concomitant of course is the reduction in SNR.
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STATISTICAL  ANALYSIS: 

 

The rest of this chapter is the tabulation our observations. Some of the data common to 

all the experiments are given on this page. Three experiments were conducted. 

 

Test Signal 1: “A quick brown fox jumped over the lazy dog.” 

Test signal 2: “Twinkle twinkle little star, how I wonder what you are.” 

 

Sampling frequency (Hz) Original signal length 

22050 66156 

8000 23999 

 

Test signal Type of voice 
Default threshold 

(fs = 22kHz) 

Default threshold 

(fs = 8kHz) 

Male 0.0027621 0.0049718 
Test signal 1 

Female 0.0008286 0.0019335 

Male 0.0011049 0.0024859 
Test signal 2 

Female 0.0022097 0.0044194 

 

 (CURRENT THRESHOLD = DEFAULT THR. X THR MULTIPLICATION 

FACTOR) 
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EXPERIMENT 1: - To choose the optimal wavelet for performing wavelet transform of  

   the speech signal. 

 

PROCEDURE:-    

1.Load test signal 1 (male voice) having a sampling frequency of   22kHz.      

2.Run the software at a SNR of 12dB for decomposition levels of 4, 5 and 6 for the 

following       wavelets:-Haar,db2, 4, 6, 8, 10 and sym 1,2,4,6,8.                

3.Repeat step 2 for test signal 1 (male voice) having a sampling frequency of 8kHz. 

4.Repeat step 2 for test signal 1 (female voice) having sampling frequencies of 22kHz 

and 8kHz.   

5. Tabulate the values. 

 

OBSERVATIONS:- 

 

MALE VOICE (SAMPLING RATE = 22kHz):- 

 

Level 4:- 

 

Family Threshold 

Multiplication 

Factor 

% of zero 

coefficients 

Signal energy in 

the first level 

approximation 

Compression 

Factor 

Retained 

signal energy 

Haar 18 93.428 98.993 10.940 93.857 

db2 28 94.763 99.656 16.119 93.719 

db4 34.4 94.979 99.742 17.727 93.702 

db6 34.55 94.927 99.765 17.837 93.967 

db8 37 94.880 99.773 17.851 93.742 
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db10 41.3 94.853 99.776 17.992 93.723 

sym1 18.2 93.475 98.993 11.032 93.759 

sym2 28 94.763 99.656 16.119 93.719 

sym4 34.2 94.965 99.747 17.609 93.704 

sym6 34.9 94.939 99.765 17.880 93.871 

sym8 38.5 94.916 99.772 18.061 93.728 

 

Level 5:- 

 

Family Threshold 

Multiplication 

Factor 

% of zero 

coefficients 

Signal energy in 

the first level 

approximation 

Compression 

Factor 

Retained 

signal energy 

Haar 17 94.178 98.993 11.684 93.731 

db2 25 95.769 99.656 17.779 93.719 

db4 29.3 96.123 99.742 20.456 93.713 

db6 30.05 96.186 99.765 21.102 93.726 

db8 30.75 96.116 99.773 21.238 93.716 

db10 31.7 96.181 99.776 21.606 93.693 

sym1 17 94.178 98.993 11.684 93.731 

sym2 25 95.769 99.656 17.779 93.719 

sym4 28.75 96.119 99.747 20.349 93.727 

sym6 30.2 96.180 99.765 20.823 93.696 

sym8 31.25 96.193 99.772 21.055 93.726 

 

Level 6:- 

 

Family Threshold 

Multiplication 

Factor 

% of zero 

coefficients 

Signal energy in 

the first level 

approximation 

Compression 

Factor 

Retained 

signal energy 
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Haar 16.75 94.483 98.993 11.697 93.812 

db2 23.48 96.294 99.656 18.531 93.738 

db4 27 96.734 99.742 21.935 93.696 

db6 27.7 96.845 99.765 22.781 93.738 

db8 27.9 96.791 99.773 22.859 93.700 

db10 28.8 96.861 99.776 23.493 93.729 

sym1 16.9 94.483 98.993 11.697 93.812 

sym2 23.5 96.299 99.656 18.547 93.722 

sym4 26.5 96.707 99.747 21.705 93.714 

sym6 27.6 96.817 99.765 22.395 93.714 

sym8 28.2 96.860 99.772 22.947 93.726 

 

MALE VOICE (SAMPLING RATE = 8kHz):- 

 

Level 4:- 

 

Family Threshold 

Multiplication 

Factor 

% of zero 

coefficients 

Signal energy in 

the first level 

approximation 

Compression 

Factor 

Retained 

signal energy 

Haar 7 86.438 94.418 4.824 93.925 

db2 8.3 89.192 97.416 6.689 93.707 

db4 9.1 90.315 98.156 7.805 93.711 

db6 9.7 90.392 98.159 8.053 93.734 

db8 9.58 90.357 98.206 8.179 93.709 

db10 9.82 90.417 98.224 8.368 93.723 

sym1 7 86.438 94.418 4.824 93.925 

sym2 8.25 89.162 97.416 6.661 93.748 

sym4 9.4 90.219 98.145 7.815 93.733 
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sym6 9.55 90.346 98.205 8.069 93.704 

sym8 10 90.548 98.214 8.309 93.719 

 

Level 5:- 

 

Family Threshold 

Multiplication 

Factor 

% of zero 

coefficients 

Signal energy in 

the first level 

approximation 

Compression 

Factor 

Retained 

signal energy 

Haar 6.85 87.380 94.418 4.978 93.692 

db2 7.85 90.175 97.416 6.839 93.704 

db4 8.6 91.366 98.156 8.124 93.746 

db6 9.2 91.469 98.159 8.415 93.729 

db8 9.1 91.518 98.206 8.532 93.745 

db10 9.23 91.653 98.224 8.866 93.706 

sym1 6.85 87.383 94.418 4.978 93.692 

sym2 7.8 90.142 97.416 6.812 93.747 

sym4 8.75 91.274 98.145 8.094 93.708 

sym6 9 91.481 98.205 8.394 93.730 

sym8 9.15 91.729 98.214 8.752 93.747 

 

Level 6:- 

 

Family Threshold 

Multiplication 

Factor 

% of zero 

coefficients 

Signal energy in 

the first level 

approximation 

Compression 

Factor 

Retained 

signal energy 

Haar 6.7 87.929 94.418 5.066 93.561 

db2 7.6 90.743 97.416 6.946 93.753 

db4 8.4 92.096 98.156 8.477 93.728 

db6 8.9 92.316 98.159 8.912 93.729 
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db8 8.85 92.428 98.206 9.108 93.709 

db10 8.95 92.576 98.224 9.523 93.706 

sym1 6.67 87.858 94.418 5.050 93.626 

sym2 7.65 90.772 97.416 6.952 93.718 

sym4 8.45 91.984 98.145 8.388 93.701 

sym6 8.72 92.324 98.205 8.879 93.692 

sym8 8.95 92.623 98.214 9.284 93.729 

 

FEMALE VOICE (SAMPLING RATE = 22kHz):- 

 

Level 4:- 

 

Family Threshold 

Multiplication 

Factor 

% of zero 

coefficients 

Signal energy in 

the first level 

approximation 

Compression 

Factor 

Retained 

signal energy 

Haar 9 88.275 95.914 5.241 94.582 

db2 9.185 91.305 97.375 7.664 93.738 

db4 9.55 92.101 97.757 8.844 93.713 

db6 9.8 92.211 97.822 9.131 93.703 

db8 9.64 92.098 97.832 9.375 93.705 

db10 9.88 92.188 97.826 9.162 93.698 

sym1 9 88.275 95.914 5.241 94.582 

sym2 9.185 91.305 97.375 7.664 93.738 

sym4 9.9 92.179 97.757 8.995 93.723 

sym6 9.8 92.269 97.826 9.014 93.699 

sym8 9.92 92.378 97.848 9.379 93.709 

 

Level 5:- 

 



 

71 

 

 

Family Threshold 

Multiplication 

Factor 

% of zero 

coefficients 

Signal energy in 

the first level 

approximation 

Compression 

Factor 

Retained 

signal energy 

Haar 9 88.456 95.914 5.274 94.447 

db2 9.1 91.622 97.375 7.622 93.703 

db4 9.33 92.457 97.757 8.776 93.703 

db6 9.59 92.614 97.822 9.079 93.695 

db8 9.43 92.508 97.832 9.299 93.695 

db10 9.61 92.598 97.826 9.152 93.698 

sym1 9 88.456 95.914 5.274 94.447 

sym2 9.1 91.622 97.375 7.622 93.703 

sym4 9.7 92.564 97.757 8.955 93.699 

sym6 9.56 92.666 97.826 8.962 93.692 

sym8 9.68 92.788 97.848 9.361 93.696 

 

Level 6:- 

 

Family Threshold 

Multiplication 

Factor 

% of zero 

coefficients 

Signal energy in 

the first level 

approximation 

Compression 

Factor 

Retained 

signal energy 

Haar 9 88.638 95.914 5.294 94.387 

db2 9.02 91.819 97.375 7.616 93.693 

db4 9.26 92.667 97.757 8.783 93.692 

db6 9.46 92.833 97.822 9.104 93.693 

db8 9.33 92.751 97.832 9.316 93.691 

db10 9.47 92.858 97.826 9.148 93.692 

sym1 9 88.638 95.914 5.294 94.387 

sym2 9.02 91.819 97.375 7.616 93.693 
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sym4 9.56 92.771 97.757 8.940 93.691 

sym6 9.47 92.896 97.826 8.997 93.692 

sym8 9.52 93.036 97.848 9.376 93.694 

 

 

FEMALE VOICE (SAMPLING RATE = 8kHz):- 

 

Level 4:- 

 

Family Threshold 

Multiplication 

Factor 

% of zero 

coefficients 

Signal energy in 

the first level 

approximation 

Compression 

Factor 

Retained 

signal energy 

Haar 2.858 82.320 85.482 3.612 92.328 

db2 3.381 83.378 89.975 3.946 93.153 

db4 3.409 83.793 91.119 3.975 93.699 

db6 3.363 83.721 91.324 4.054 93.686 

db8 3.429 83.753 91.619 4.166 93.686 

db10 3.394 83.513 91.540 4.072 93.689 

sym1 2.858 82.320 85.482 3.612 92.328 

sym2 3.380 83.378 89.975 3.946 93.153 

sym4 3.380 83.718 91.062 4.042 93.679 

sym6 3.390 83.700 91.359 4.081 93.682 

sym8 3.399 83.915 91.453 4.117 93.668 

 

Level 5:- 

 

Family Threshold 

Multiplication 

% of zero 

coefficients 

Signal energy in 

the first level 

Compression 

Factor 

Retained 

signal energy 
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Factor approximation 

Haar 2.857 82.771 85.482 3.646 92.157 

db2 3.380 84.054 89.975 3.994 93.005 

db4 3.354 84.334 91.119 3.973 93.695 

db6 3.356 84.422 91.324 4.109 93.578 

db8 3.358 84.423 91.619 4.188 93.693 

db10 3.343 84.253 91.540 4.117 93.671 

sym1 2.859 82.771 85.482 3.646 92.157 

sym2 3.381 84.054 89.975 3.994 93.005 

sym4 3.335 84.251 91.062 4.041 93.688 

sym6 3.330 84.306 91.359 4.078 93.686 

sym8 3.337 84.564 91.453 4.116 93.680 

 

Level 6:- 

 

Family Threshold 

Multiplication 

Factor 

% of zero 

coefficients 

Signal energy in 

the first level 

approximation 

Compression 

Factor 

Retained 

signal energy 

Haar 2.858 83.4475 85.482 3.717 92.069 

db2 3.380 83.464 89.975 3.601 94.008 

db4 3.330 85.112 91.119 4.083 93.694 

db6 3.299 85.152 91.324 4.204 93.681 

db8 3.339 85.379 91.619 4.344 93.682 

db10 3.315 85.243 91.540 4.251 93.679 

sym1 2.857 83.447 85.482 3.717 92.069 

sym2 3.385 84.955 89.975 4.143 92.855 

sym4 3.306 85.024 91.062 4.146 93.689 

sym6 3.301 85.181 91.359 4.199 93.684 
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sym8 3.303 85.491 91.453 4.286 93.687 

 

CONCLUSIONS:- 

 

1. Within a given family, compression factor, threshold multiplication factor and % 

of zero coefficients increases with increase in decomposition level at constant 

SNR. 

2. Considering compression factor and signal energy in 1st level approximation at a 

given SNR:- 

a) db10 and sym8 wavelets are best for male speech signal  

  b) db8 and sym8 wavelets are best for female speech signal. 

 

3. Haar, sym1 and db1 wavelets show nearly similar characteristics for constant 

SNR. 
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EXPERIMENT 2:-   To find the optimum decomposition level. 

 

PROCEDURE:-   

 1.For test signal 1 at a threshold multiplication factor of 5, run the software for 

decomposition levels 1 to 10 for db10,sym6 and Haar wavelets at sampling 

frequencies of 22kHz and 8kHz on male and female voices. Tabulate the values of 

SNR and compression factor. 

 

OBSERVATIONS:- 

 

Sampling rate = 22kHz:- 

 

db10:- 

 

Male voice Female voice  

Level SNR (dB) Compression 

factor 

SNR (dB) Compression 

factor 

1 27.6566 3.0523 18.5334 3.2546 

2 23.4328 5.0838 16.5411 4.1152 

3 21.8954 6.7943 15.9036 4.4222 

4 21.4316 7.8014 15.6949 4.5325 

5 21.2537 8.1153 15.6406 4.554 

6 21.1736 8.2468 15.6137 4.5761 

7 21.1364 8.3152 15.5679 4.6533 

8 21.098 8.4307 15.5443 4.6942 

9 21.0807 8.455 15.529 4.7079 

10 21.0769 8.4631 15.5239 4.7079 

 

sym6:- 
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Male voice Female voice  

Level SNR (dB) Compression 

factor 

SNR (dB) Compression 

factor 

1 27.4479 3.1185 18.1079 3.494 

2 23.4272 5.1814 16.411 4.2692 

3 21.8907 6.7396 15.8744 4.5192 

4 21.4299 7.5954 15.699 4.6118 

5 21.2468 7.8468 15.6441 4.6263 

6 21.1755 7.9476 15.6179 4.6415 

7 21.1484 7.9899 15.5701 4.6919 

8 21.1092 8.0806 15.5443 4.7264 

9 21.0912 8.1064 15.5303 4.7393 

10 21.0809 8.1233 15.5243 4.739 

 

 

 

Haar :- 

 

Male voice Female voice  

Level SNR (dB) Compression 

factor 

SNR (dB) Compression 

factor 

1 22.5634 3.0498  2.7243 

2 20.4174 4.0116 20.0044 2.9973 

3 19.7622 4.3818 19.3497 2.9985 

4 19.4602 4.5481 18.9258 3.0034 

5 19.3808 4.5887 18.8462 3.0023 

6 19.3341 4.6028 18.7766 3.004 

7 19.3176 4.605 18.7289 3.0059 
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8 19.2948 4.6147 18.7062 3.0055 

9 19.2884 4.6182 18.6923 3.0048 

10 19.2815 4.6182 18.6855 3.0041 

  

Sampling rate = 8kHz:- 

 

db10:- 

 

Male voice Female voice  

Level SNR (dB) Compression 

factor 

SNR (dB) Compression 

factor 

1 19.6826 2.7835 12.8405 3.2252 

2 16.7846 4.3278 10.7026 4.8004 

3 16.1497 5.3421 9.9782 5.4874 

4 15.7859 5.8599 9.6135 5.7298 

5 15.5983 6.1152 9.3884 6.0489 

6 15.4685 6.3869 9.3372 6.5028 

7 15.4038 6.5508 9.3025 6.7821 

8 15.3712 6.6212 9.2748 6.913 

9 15.3566 6.6561 9.2534 6.9611 

10 15.3465 6.6784 9.238 6.9652 

 

sym6:- 

 

Male voice Female voice  

Level SNR (dB) Compression 

factor 

SNR (dB) Compression 

factor 

1 19.5694 2.8663 12.8614 3.2875 

2 16.7886 4.2868 10.7141 4.7746 
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3 16.0433 5.2326 9.9952 5.4575 

4 15.7033 5.6783 9.6255 5.6877 

5 15.4977 5.8901 9.4522 5.9381 

6 15.388 6.0657 9.4032 6.333 

7 15.3342 6.2278 9.3689 6.5849 

8 15.3102 6.2898 9.348 6.712 

9 15.3008 6.318 9.3259 6.763 

10 15.2954 6.3246 9.3164 6.7554 

 

Haar:- 

 

Male voice Female voice  

Level SNR (dB) Compression 

factor 

SNR (dB) Compression 

factor 

1 17.175 2.6719 12.5276 3.2174 

2 15.2609 3.3673 10.2738 4.0144 

3 14.7541 3.7046 9.4954 4.3115 

4 14.4906 3.8707 9.2642 4.3919 

5 14.3624 3.9445 9.0925 4.4948 

6 14.2746 3.989 9.0247 4.6633 

7 14.2316 4.0225 8.9865 4.7425 

8 14.2121 4.0394 8.9597 4.7908 

9 14.201 4.0428 8.937 4.81 

10 14.196 4.0435 8.9321 4.8139 
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CONCLUSION:-   

 

For a sampling frequency of 22kHz, no performance advantage is gained above 

decomposition level 5 in terms of compression factor. The same is observed for 8kHz 

sampling frequency at level 3. 

Also at these levels, there was good clarity in speech for male and female voices. 
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EXPERIMENT 3:-  To observe the difference between male and female speech signals  

and effect of threshold values on it. 

 

PROCEDURE:-    

1.Run the software for db10 wavelet at decomposition level 5 for 22kHz and 8kHz on 

two sets of male and female speech signals. 

2.Tabulate the values of SNR and compression factor. 

 

OBSERVATIONS:- 

 

db10, Decomposition level-5, Sampling freq.-22kHz:- 

 

Test signal 1:- 

 

Male voice Female voice 
  Current 

Threshold SNR (dB) 
Compression 

Factor 
SNR (dB) 

Compression 

Factor 

0.0027 32.30 2.1 19.36 2.75 

0.0138 21.25 8.11 9.36 14.86 

0.0276 17.69 12.77 6.57 22.44 

0.0414 15.70 15.94 4.80 27.29 

0.0550 14.31 18.09 3.30 31.60 

0.0690 13.16 19.84 2.34 35.33 

0.0828 12.29 21.14 1.51 39.61 

0.0966 11.52 22.31 0.996 42.51 

0.1104 10.90 23.20 0.815 43.52 

0.1242 10.10 24.34 0.67 44.13 

0.1384 9.58 25.01 0.67 44.13 

0.1658 8.49 26.57 0.67 44.13 
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0.1932 7.63 27.80 0.67 44.13 

0.220 6.68 29.31 0.67 44.13 

0.276 5.55 31.11 0.67 44.13 

0.345 4.40 32.88 0.67 44.13 

0.414 3.31 34.96 0.67 44.13 

0.483 2.72 36.05 0.67 44.13 

0.552 2.21 37.00 0.67 44.13 

0.607 1.71 37.73 0.67 44.13 

0.690 1.24 38.68 0.67 44.13 

0.800 1.20 38.75 0.67 44.13 

0.814 1.15 38.82 0.67 44.13 

0.828 1.15 38.82 0.67 44.13 

1.390 1.15 38.82 0.67 44.13 
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Test signal 2:- 
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Male voice Female voice 
Current 

Threshold SNR (dB) 
Compression 

Factor 
SNR (dB) 

Compression 

Factor 

0.0022 24.71 1.78 25.54 1.5 

0.011 12.9 8.45 13.03 6.25 

0.022 9.56 14.48 9.50 10.27 

0.033 7.72 19.17 7.38 13.44 

0.044 6.40 23.2 5.80 16.76 

0.055 5.49 26.2 4.60 19.98 

0.066 4.84 28.34 3.81 22.92 

0.077 4.22 30.29 3.22 25.04 

0.088 3.69 31.91 2.27 27.11 

0.099 3.27 33.24 2.35 28.60 

0.110 2.99 34.06 2.05 29.69 

0.132 2.48 35.58 1.61 31.38 

0.154 2.07 36.55 1.25 32.65 

0.176 1.75 37.39 1.04 33.31 

0.209 1.56 37.80 0.94 33.54 

0.220 1.56 37.80 0.827 33.77 

0.275 1.56 37.80 0.827 33.77 

0.330 1.56 37.80 0.827 33.77 
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db10, decomposition level – 5, Sampling rate – 8kHz:- 

 

Test signal 1:- 

 

Male voice Female voice 
Current 

Threshold SNR (dB) 
Compression 

factor 
SNR (dB) 

Compression 

factor 

0.004972 27.449 2.116 14.175 3.178 

0.024859 15.599 6.115 3.993 14.219 

0.049718 11.565 9.210 0.881 30.04 

0.074577 9.231 11.322 0.177 37.386 

0.099436 7.351 13.254 0.136 37.739 

0.124295 5.683 16.251 0.136 37.739 

0.149154 4.659 18.253 0.136 37.739 

0.174013 3.629 20.567 0.136 37.739 

0.198872 2.909 22.643 0.136 37.739 

0.223731 2.055 26.405 0.136 37.739 
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0.248590 1.502 29.023 0.136 37.739 

0.298308 1.004 32.131 0.136 37.739 

0.348026 0.741 33.853 0.136 37.739 

0.397744 0.481 35.245 0.136 37.739 

0.447462 0.452 35.401 0.136 37.739 

0.497180 0.381 35.717 0.136 37.739 

0.621475 0.195 36.367 0.136 37.739 

0.745770 0.195 36.367 0.136 37.739 

0.870065 0.195 36.367 0.136 37.739 

0.994360 0.195 36.367 0.136 37.739 
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Test signal 2:- 

 

Male voice Female voice 
Current 

Threshold SNR (dB) 
Compression 

factor 
SNR (dB) 

Compression 

factor 
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0.004419 17.819 2.150 18.662 1.792 

0.022097 6.823 8.019 6.814 5.839 

0.044194 3.320 16.565 2.657 13.747 

0.066291 1.696 23.812 0.985 23.601 

0.088388 0.856 29.523 0.411 28.205 

0.110485 0.506 31.875 0.171 30.306 

0.132582 0.278 33.336 0.094 30.851 

0.154679 0.191 33.758 0.094 30.851 

0.176776 0.149 33.901 0.094 30.851 

0.198873 0.149 33.901 0.094 30.851 

0.220970 0.149 33.901 0.094 30.851 

0.265164 0.149 33.901 0.094 30.851 

0.309358 0.149 33.901 0.094 30.851 

0.353552 0.149 33.901 0.094 30.851 

0.397746 0.149 33.901 0.094 30.851 

0.441940 0.149 33.901 0.094 30.851 

0.552425 0.149 33.901 0.094 30.851 

0.662910 0.149 33.901 0.094 30.851 

0.773395 0.149 33.901 0.094 30.851 

0.883880 0.149 33.901 0.094 30.851 
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CONCLUSIONS: 

 

1. It is observed that after some particular threshold value, the SNR and compression 

factor doesn’t change. This is because at this point all the detail coefficients are truncated 

to zero and only approximate coefficients remain. 

2. Male voices have relatively more approximate coefficients than female voices. 

3.The threshold value required for complete detail truncation depends upon the amplitude 

of the i/p speech signal.  
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8 FURTHER  STUDY 

 

 

This thesis was, admittedly, limited in scope. The main objective was to develop an 

appreciation for wavelet transforms, discuss their application in compression of human 

speech signals and study the effect of a few parameters on the quality of compression. 

The parameters studied are: Sampling frequency, type of wavelet, threshold, male/female 

voice. 

 

There are a few topics that were deliberately excluded due to the limitation of our 

undergraduate study. Some of them are stated below. Any or all of these topics can be 

explored further with a view to achieving better performance. 

 

The analysis that we undertook for wavelets includes only the orthogonal and compactly 

supported wavelets.  The reader may find it interesting to study the effect of other 

wavelets on compression.  

 

Secondly, the sound files that we tested were of limited duration, around 5 seconds. 

Albeit the programs will run for larger files (of course, the computation time will be 

longer in this case), a better approach towards such large files is to use frames of finite 

length. This procedure is more used in real-time compression of sound files, and was not 

discussed here.  

 

Encoding is performed using only the Run Length Encoding. The effect of other 

encoding schemes on the compression factor have not been studied. In fact, higher 

compression ratios are expected with coding techniques like Huffman coding. 

 



 

88 

 

 

This thesis considered only wavelets analysis, wherein only approximation coefficients 

are split. There exists another analysis, called wavelet packet analysis, which splits detail 

coefficients too. This was not explored in this thesis. 

 

Last but not the least, the effect of wavelet transform on voiced and unvoiced speech is 

different1, and thus compression ratios ought to be different. 

                                                 
1 See  References, section II, #3 



 

89 

 

 

BIBLIOGRAPHY AND REFERENCES:- 

 

I : Books: 

 

1. Ainsworth WA.  ‘Speech recognition by machine’. London: Peter Peregrinus, 

1988. 

 

2. Ben Gold and Nelson Morgan. ‘Speech and Audio Signal Processing’. John 

Wiley and Sons, 2000.  

 

3. Gonzalez R.C., Woods R.E.. ‘Digital Image Processing’. Massachusetts: Addison 

Wesley, 1988. 

 

4. Haykin Simon. ‘Digital Communication’. New York: John Wiley and Sons, 1988. 

 

5. Haykin Simon  ‘Communication System’. New York: John Wiley and Sons, 

1978. 

 

6. Held Gilbert.  ‘Data Compression’ (2nd Ed) . John Wiley and Sons, 1983. 

 

7. Jain A.K. ‘Digital Image Processing’. New Jersey: Prentice Hall Inc., 1989. 

 

8. Owens F.J.  ‘Signal Processing of Speech’ Macmillan Ltd. 

 

9. Proakis John G. ‘Digital Communications’ .New York: Macmillan Pub. Co, 1988. 

 

 

10. Rao R M  and Bopardikar A S . ‘WAVELET TRANSFORMS: Introduction to                                                

theory and applications’. Pearson Education (Singapore) Pte. Ltd. 



 

90 

 

 

 

11. Rudra Pratap.  ‘MATLAB: A quick reference for Scientists and Engineers’. 

Oxford University Press-2002 

 

 

12. Mitra Sanjit K. ‘Digital Signal Processing: A computer based approach’. Tata 

McGraw-Hill –2001 

 

13. Salomon David.  ‘Data Compression: the complete reference(2nd Ed)’. Springer 

Verlag, New York- 2000. 

 

14. Watkinson John. ‘Compression in Video and Audio’.Butterworth-Heinemann, 

1995. 

 



 

91 

 

 

 

 

 

II: Techncial papers/dissertations/tutorials : 

 

 

1. ‘APPLYING WAVELET ANALYSIS IN CODING OF SPEECH AND AUDIO 

SIGNALS FOR MULTIMEDIA APPLICATIONS’- P.S Sathidevi and 

Y.Venkataramani (Department of Electronics Engineering, Regional Engineering 

College, Calicut, Kerala. 

2. ‘THE WAVELET TUTORIAL-PARTS 1 TO 4’ : Polikar Robi 

3. ‘Thesis: Speech Compression Using Wavelets’ : Rao Nikhil 

4. ‘SPEECH AND IMAGE SIGNAL COMPRESSION WITH  WAVELETS’ . 

W.Kinsner  and A.Langi 

5. "A theory for multiresolution signal decomposition: the wavelet representation," 

IEEE Pattern Anal. and Machine Intell., vol. 11, no. 7, pp. 674-693 , by  Mallat, 

S. (1989). 

6. ‘MULTIRESOLUTION APPROXIMATIONS AND WAVELET ORTHONORMAL 

BASES OF L2(R)’ , by  Mallat, S. 

7. The MATLAB  wavelet toolbox  help : The  MathWorks, Inc. 

 

 

III: SOME USEFUL URLs:- 

 

http://www.speech.cs.cmu.edu/comp.speech 

http://www.data-compression.com/speech.html 

http://isc.faqs.org/faqs/compression.faq/part1/ 

http://cas.ensmp.fr/~chaplais/Wavetour_presentation/Wavetour_presentation_US.html 

http://www.ecs.syr.edu/faculty/lewalle/wavelets.html 


