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PREFACE
ﬁ

Multimedia files in generd need plenty of disk space for Storage apat from being
unwiddy for communicatiion purposes and sound files ae no exception. Hence
compression of these files has become a necessity and is aripe subject for research.

The field of sgnd processng has enjoyed severd andysis tools in the past. One of the

more recent (and, needless to say, more exciting) developments in this fidd has been the
emergence of a new transform, THE WAVELET TRANSFORM. In fact, its use is not
redricted to sgnd processng adone, but ranges over such diverse fidds as image
processng, communications, mathematics, computer science to name a few. Wavelet
transforms, in their different guises, have come to be accepted as a set of tools useful for
various applications. Wavelet transforms are good to have & one's fingertips, aong with
many other, mostly more traditiond, tools.
This theds consders the gpplication of Wavdet transforms for the compresson of human
speech dgnds. It is pat of the project on the said topic undertaken by a group of
undergrad students. The study was by no means exhaudtive, which is beyond the purview
of undergrad study.

It can ds0 sarve as a guide to understand the working of the software implementation of
the project, which is provided in the accompanying CD. Note that you need MATLABO
Verson 6 or higher to run the code. Other than this, the software is sdf-contained in
terms of help files and source code, which facilitates dteration of the program to suit
your needs.

Chapter 1 is intended to serve as an introduction. Its main purpose is to define the scope
of this project.



Chapter 2 presents the drawbacks inherent in the Fourier Methods. It is assumed that the
reeder is conversant with the Fourier methods. A specific example is taken wherein the
shortcomings of Fourier methods become reedily evident.

Chapter 3 presents a detailed introduction to the wavelet andyss. It tries to compare
Wavdet trandform as a sgnd processng tool in view of its amilarities and differences
with the Fourier methods. The CONTINUOUS WAVELET TRANSORM (CWT) is
discussed next. The chapter concludes by demondrating how the waveet transform
overcomes the drawbacks of Fourier methods.

Chapter 4 discusses the ‘DISCRETE WAVELET TRANSFORM’ (DWT), which is a
more practical approach than CWT. It ds0 explans an implementation of DWT using
filtering schemes.

In chapter 5, the use of Wavee trandform in speech compression is presented. The
motivation for usng waveets for gpeech compresson is developed, so is the agorithm
used for the same.

The pertinent commands of MATLABO WAVELET TOOLBOX are explained in brief
in chapter 6. Specificadly, the commands used for achieving compresson are discussed
dong with ther syntax. The software implementation is based on these commands.
However, a detaled discusson of software is relegated to the Appendix lest you get

inundated with extraneous details of programming.

The conclusion is the subject of chapter 7. Statistical analyss of sgnds is performed and
the results recorded. Based on these, inferences are drawn.

As has been pointed out, this discusson is not comprehensive, to compensate for which
plenty of references have been provided a the end. The accompanying CD contans
myriad documents that we found on the internet. These should serve as useful guide for
anyone interested in pursuing the subject beyond the point where we stopped.

The Appendices are included in the CD
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1 INTRODUCTION TO AND SCOPE OF THE PROJECT

|
1.1 Speech Signals

The human gpeech in its prigine form is an acoudic sgnd. For the purpose of
communication and storage, it is necessary to convert it into an eectrica sgnd. This is
accomplished with the help of certain instruments called * transducers .
This electrical representation of peech has certain properties.
1. Itisaone-dimensond sgnd, with time as its independent variable.
2. Itisrandom in nature.
3. Itisnondationary, i.e. the frequency spectrum is not congtant in time.
4. Although human beings have an audible frequency range of 20Hz —20kHz, the
human gpeech has dgnificant frequency components only upto 4kHza
property that is exploited in the compression of speech.

Digital representation of speech

With the advent of digitad computing machines, it was propounded to exploit the powers
of the same for processng of gpeech sgnds. This required a digital representation of
goeech. To achieve this the andog sgnd is sampled a some frequency and then
quantized at discrete levels. Thus, parameters of digita speech are

1. Sampling rate

2. Bits per second

3. Number of channds.
The sound files can be stored and played in digitd computers. Various formats have been
proposed by different manufacturers for example *.wav’ ‘.au’ to nameafew.
Inthisthess the‘.wav' format is used extensvely due to the convenience in recording it
with * Sound recorder’ software, shipped with WINDOWS OS.



1.2 Compression — An Overview

In the recent years, large scde information transfer by remote computing and the
development of massve dorege and retrievd systems have witnessed a tremendous
growth. To cope up with the growth in the Sze of databases, additionad Storage devices
need to be ingaled and the modems and multiplexers have to be continuoudy upgraded
in order to permit large amounts of data transfer between computers and remote
terminds. This leads to an increase in the cost as well as equipment. One solution to these
problems is-“COMPRESSION” where the database and the transmission sequence can be
encoded efficiently.

WHY COMPRESSION?

Compression is a process of converting an input data stream into another data stream that
has a smdler sze. Compresson is possble only because data is normally represented in
the computer in a format that is longer than necessary i.e. the input data has some amount
of redundancy associated with it. The man objective of compresson systems is to
eliminate this redundancy.

When compression is used to reduce storage requirements, overadl program execution
time may be reduced. This is because reduction in storage will result in the reduction of
disc access attempts.

With respect to transmisson of data, the data rate is reduced a the source by the
compressor (coder) it is then passed through the communication channel and returned to
the origind rate by the expander(decoder) a the receiving end. The compresson
dgorithms help to reduce the bandwidth requirements and adso provide a level of security
for the data being transmitted. A tandem pair of coder and decoder is usudly referred to

as codec.



APPLICATIONS OF COMPRESSION

1. The use of compresson in recording applications is extremey powerful. The playing
time of the medium is extended in proportion to the compression factor.

2. In the case of tapes, the access time is improved because the length of the tape needed
for agiven recording is reduced and so it can be rewound more quickly.

3. In digitd audio broadcaging and in digita tdevison transmisson, compresson is
used to reduced the bandwidth needed.

4. The time required for a web page to be displayed and the downloading time in case of

filesis greetly reduced due to compression.

COMPRESSION TERMINOLOGY
o Compression ratio- The compression ratio is defined as-
Compression ratio = Size of the output stream/size of the input stream

A vdue of 0.6 means that the data occupies 60% of its origind Sze after compresson.
Vaues greater than 1 mean an output Stream bigger than the input stream. The
compression ratio can dso be cdled bpb(bit per bit),snce it equas the no. of bits in the
compressed stream needed, on an average, to compress one bit in the input stream.

o Compresson factor- It is the inverse of compresson raio. Vaues greater than 1

indicate compression and less than 1 indicates expansion.



1.3 Coding Techniques

There are various methods of coding the speech sgndl

CODING TECHNIQUES
| WAVEFORM CODING | SOURCE CODING |

LPC Vocoders

Sub-band coding MPE codecs

Transform Coding RPE codecs
ADPCM CELP codecs

1.4 Aim, Scope And Limitations of This Thesis

The primary objective of this thess is to present the wavelet based method for the
compresson of speech. The dgorithm presented here was implemented in MATLABA .
The sad software is provided in the accompanying CD. Readers may find it useful to
verify the result by running the program.

Since this thess is an application of wavdets, it was naturd to study the badcs of
waveets in detall. The same procedure was adopted in writing this thess, as it was felt



that without minima background in wavdets, it would be fruitless, and dso inconvenient
to explain the dgorithm.

However, the waveet itsdf is an engrossng fidd, and a comprehensve sudy was
beyond the scope of our undergraduate level. Hence, attempt is made only to explain the
very bascs which are indispensable from the compresson point of view. This gpproach
led to the dimination of many of the  mammoth Szed equations and vector anadyss
inherent in the Sudy of wavedets.

At this stage, it is worthwhile mentioning two quotes by famous scientists
‘So far asthe laws of mathematics refer to reality, they are not certain. And so far as

they are certain, they do not refer to reality.” --Albert Eingein

‘ As compl exity rises, precise statements lose meaning and meaningful statements

lose precision.” --Lotfi Zadeh 1

The incluson of the above quotes is to highlight the fact that smplicity and daity are
often the casudties of precison and accuracy, and vice-versa

In this thess, we have compromised on the mathematical precison and accuracy to make
matters smple and dear. An amateur in the fidd of wavdets might find this work useful
as it is rdieved of mos of the intimideting vector anadyss and eguations, which have
been supplanted by smple diagrams. However, for our own understanding, we did found
it necessry, interesting and exciting to go through some literature which ded with the
intricate details of waveet andyds, and sufficient references have been provided
wherever necessary, for the sake of a farly advanced reader. Some of the literature that
we perused has been included in the CD.

! Lotfi Zadeh is considered to be the father of Fuzzy Logic



The andyds tha we undertook for waveets includes only the orthogona wavelets. This
decison was based on the extensve literaiure we read on the topic, wherein the
suitability of these wavelets for speech sgnds was sated.

Another topic that has been deliberately excluded in this work is the concept of MRA,
which bridges the gap between the waveets and the filter banks and is indispensable for a
good understanding of Mala’'s Fast Waveet Transform Algorithm. Ingtead, we have
assumed certain results and provided references for further reading.

Secondly, the sound files that we tested were of limited duration, around 5 seconds.
Albet the programs will run for larger files (of course, the computation time will be
longer in this case), a better approach towards such large files is to use frames of finite
length. This procedure is more used in red-time compresson of sound files, and is not

presented here.

Encoding is peformed usng only the Run Length Encoding. The effect of other

encoding schemes on the compression factor have not been studied.

This thess congders only waveets andyss, wherein only approximation coefficients are
glit. There exids another andyss cdled wavelet packet andyss, which splits detall
coefficients. Thisisnot explored in thisthesis.



2 WEAKNESSES OF FOURIER ANALYSIS
ﬁ

I ntroduction

This chapter develops the need and motivation for sudying the waveet transform.
Higtoricdly, Fourier Transform has been the most widely used tool for sgna processing.
As dsgnd processng began spreading its tentacles and encompassng newer Sgnds,
Fourier Transform was found to be unable to satisfy the growing need for processng a
bulk of sgnds. Hence this chepter begins with a review of Fourier Methods. Detailed
explanation is avoided to rid the discusson of inggnificat detalls A dmple case is
presented, where the shortcomings of Fourier methods is expounded. The next chapter

concerns wave et transforms, and shows how the drawback of FT are diminated.

2.1 Review of Fourier Methods

For a continuous—time signd X(t) , the Fourier Transform (FT) equations are

X(f)= _Zx(t) e g

X(f) = I:X(f) ® gzjﬁdf_ 22

Equation (2.1) isthe analys's equation and equation (2.2) is the synthesis equation.



The synthess eguation suggests that the FT expresses the sgnd in terms of linear
combination of complex exponentia sgnd. For a red sgnd, it can be shown that the FT
gynthesis equation expresses the sgnd in terms of linear combination of sine and cosne

terms. A diagrammatic representation of thisis asfollows.

i £ Fourier i B Sl o

i ' Transform

Signal Constituent sinusoids of different frequencies

fig2.1: A signal shown asalinear combination of snusoids (FT method)

The andyds equation represents the given sgnd in a different form; as a function of
frequency. The origind sgnd is a function of time, whereas the after the transformation,
the same dgnd is represented as a function of frequency. It gives the frequency

componentsin the sgnd.

wa [Fl L

Transform Frequency

Amplitude
Amplitude

Time

fig 2.2: Transforming a sgnal from time-domain to frequency-domain, the
FOURIER METHOD

Thus the FT is a very useful tool as it gives the frequency content of the input sgnd. It

however suffers from a serious drawback. It is explaned through an example in the

sequel.



2.2 Shortcomingsof FT

EXAMPLE 2.1: Congder thefollowing 2 Sgnds

x1(t) = sn(2*p* 100*t) 0<=t<0.1lsec
= 9n(2*p*500*t) 0.1<=t<0.2 sec
x2(t) = dn(2*p*500*t) 0<=t<0.1sec
=dn(2*p*100*t) 0.1<=t<0.2 sec

A plot of these Sgndsis shown below.

(Note: A time intervd of O to 0.2 seconds was divided into 10,000 points. The sine of
each point was computed and plotted. Since the signad is of 10,000 points, 16,384 point
FFT was computed which represents the frequency domain of the sgnd. This was done
in MATLABO)

l=ﬂ Lies ﬂ 2 gecnnds !ll‘buiﬂliﬂﬂl E:BI"I"II!I-BI‘IEI‘*EI- ans mr'n::'pl 1|:H:|‘ﬂ ﬂl‘ld sin2" r_'ll“ﬁﬂﬂl'_l
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fig2.3: sgnal x1(t) and itsFFT



t=0to 0.2 seconds . sinusoidal components are sind2*pi* 1004} and ﬂnt?‘pl‘ﬁﬂﬂi}
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fig2.4: Signal x2(t) and its FFT

The above example demondrates the drawback inherent in the Fourier andyss of
sgnds. It shows that the FT is unable to distinguish between two different Sgnds. The
two signa's have same frequency components, but at different times.

Thus, the FT isincapable of giving time infor mation of signals.

In generd, FT is not suitable for the andyss of a class of sgnds cdled NON-
STATIONARY SIGNALS.
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This led to the search of new tools for andyss of dgnds. One such tool that was
proposed was the SHORT TIME FOURIER TRANSFORM (STFT). This STFT too
suffered from a drawback1 and was supplanted by WAVELET TRANSFORM.

In the sequel, CONTINUOUS WAVELET TRANSFORM is introduced, and the same
problem is solved with the help of this transform.

! see the tutorials on  WAVELET TRANSFORMS by ROBI POLIKAR for a detailed discussion on this.

11



3INTRODUCTION TO WAVELETSAND THE
CONTINUOUSWAVELET TRANSFORM (CWT)

)

INTRODUCTION:

This chapter provides a maotivation towards the sudy of wavelets asatool for sgnd
processing. The drawbacks inherent in the Fourier methods are overcome with wavelets.

Thisfact isdemongrated here.
It must be reiterated that the discussion in this chapter is by no means comprehensve and
exhaudtive. The concepts of time-frequency resolution have been avoided for the sake of

amplicity. Instead, the development endeavors to compare the Wavelet methods with the
Fourier methods as the reader is expected to be well conversant with the latter.

3.1 Continuous-time Wavelets
Congder areal or complex-vaued continuous-time function y (t) with the following

properties 1
1. Thefunction integratesto zero

. Z)y (t)d(t) =0 (3.1)

2. Itissguare integrable or, equivdently, hasfinite energy:

LA third condition, called admissibility condition also exists. For adetailed study of thistopic, the
reader is referred to the book by Rao (see references, section |, # 10)

12
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A function is cdled mother wavdet if it satifies these two properties. There is an
infinity of functions that satisfy these properties and thus qudify to be mother waveet.
The dmplest of them is the ‘Haar wavdet'. Some other waveets are Mexican hat,
Morlet. Apart from this, there are various families of wavedets. Some of the families are
daubechies family, symlet family, coiflet family etc. In this theds the man dress is

given on the Daubechies family, which has dbl to dbl0 waveets They are shown in the
following figure' .

Haar wavel et

! db1 is same as haar wavelet

13
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fig 3.1 : Some wavelet functions.
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3.2 The Continuous Wavelet Transform (CWT)

Congder the following figure which juxtaposes a snusoid and awavel et

Sine Wave Wavelet (db10)

fig 3.2 : comparing she wave and awavelet
As has dready been pointed out, waveet is awaveform of effectively limited duration
that has an average vaue of zero.
Compare wavelets with Sne waves, which are the basis of Fourier andyss.
Snusoids do not have limited duration -- they extend from minus to plus infinity. And

where sinusoids are smooth and predictable, wavelets tend to beirregular and

asymmedric.

15



Fourier andyss congsts of breaking up asignd into sine waves of various Frequencies
(fig 2.1). Smilarly, wavelet analyssis the bresking up of asgnd into shifted and scaled
versons of the origind (or mother) waveet. Compare the following figure with fig :2.1 .

Wavelot

Signal Constituent wavelets of different scales and positions

fig 3.3 :figure demongrating the decomposition of asgna into wavelets

The above diagram suggests the existence of a synthesis equation to represent the origind
sgnd asalinear combination of waveets which are the bad's function for wavelet
andysis (recollect that in Fourier andlys's, the basis functions are Snes and cosines). This
isindeed the case. The wavelets in the synthesis equation are multiplied by scdars. To
obtain these scalars, we need an andysis equation, just asin the Fourier case.

We thus have two equations, the analyss and the synthesis equation. They are stated as
follows
1. Andyssequationor CWT equation:*
¥

i Lyt
C@n= f 0 v ) 80

2. Synthesisequation or ICWT:

1 The “** indicates complex conjugate.

16



1 . 1

f(t):_K ag bg C(ab\Hy( )d(a) a) (3.4)

K isacongant; it depends on the wavelet

The bass functions in both Fourier and wavelet andyds ae locdized in frequency
making mathematical tools such as power spectra (power in a frequency interva) useful
a picking out frequencies and cdculating power distributions.

The mogt important difference between these two kinds of transforms is that individud
wavdet functions are locdized in space. In contras Fourier sne and cosine functions
are non-loca and are ective for dl timet.

This locdization feature, dong with wavelets locdization of frequency, makes many
functions and operators usng wavees “sparse’, when transformed into the waveet
domain. This sparseness, in turn results in a number of useful applications such as daa

compression, detecting featuresin images and de-noising signals.

Returning to the equations

The quantities ‘a and ‘b’ appearing in the above equations represent  respectively the
scdeand shift of mother wavelet.

The wavdet transform of a d9gnd f(t) is the family C(ab), given by the andyss equation.
It depends on two indices a and b. From an intuitive point of view, the wavelet
decomposition congds of caculaing a "resemblance index" between the sgnd and the
wavelet located a podtion b and of scde a If the index is large, the resemblance is
drong, otherwise it is dight. The indexes C(ab) are cdled coefficients. The dependence

of these coefficients on both ‘a and ‘b’ is responsble for the wavelet transform

17



preserving time and frequency information. These quantities are explained in the

following sections.

3.3 TheScale‘a

Smply put ‘Scding a wavelet means dretching (or compressing) it © .To go beyond
colloquia descriptions such as "dretching,” we introduce the scde factor, often denoted
by the letter ‘a. If were taking about snusoids, for example, the effect of the scde
factor isvery easy to seel

| = e
.f-r--’ -\\-\-\"\
R e f(t) =sin(t); a=1
H‘\-\.x ___.-"-'f'
[ EREELL e
] 2 i 4 A fi
= S At :
i el 1
o 5 f(t) = sin(2t); a = 3
. 4" i 2
'\.\
. i
el ek
u & 3 1 5 &
17=
Al
s : 1
C 5 . 1 f(t) = sin(4t); a = i
L
1 - .

=
r>
o
e
o
=T

fig 3.4 : Effect of scaling on Snewaves

The scde factor works exactly the same with wavelets. The smaler the scde factor, the
more "compressed” the wavelet and vice versa.

(seefig 3.5)
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It is clear from the diagrams tha, for a snusoid sn(wt), the scde factor is related
(inversdy) to the radian frequency w . Smilaly, with wavde andyss the scde is
related to the frequency of the sgndl.

ol
ol o~ =
e U fiy=wit) ; a=1
—_— — x. ¢ [ e
AJ A ¥ ’
. 0 dah o Sed  EEd eb |Zhe o Mob [E3 BDY Zhoo
0
| -
e |'-‘" 1
s t)y=w(2t); a=_-
ArfE ‘-\\.jﬂ Um,_,_ 1 f ( J ‘l-”f ) ] 2
ke .::'0 '1;,'2' Jan t'l,' : ‘I':'I'J'J 1.':Il"3' 1'IIC"J 1 '.I'J(' + BI'J PN ]
L
nizk - ]-
B ft) =yidt); a=7
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fig 3.5: Effect of scding on wavelets
Thus the higher scdes correspond to the most "stretched” wavelets. The more stretched

the wavelet, the longer the portion of the signd with which it is being compared, and thus
the coarser the signa feetures being measured by the wavelet coefficients.

A/L/\AM/\ - A/\/\/\M/\

Low scale High scale

fig 3.6 : Figure demondrating the effect of stretching the waveet on the length of
thesgna being compared
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Thus, there is a correspondence between wavel et scales and frequency as reveded
by waveet andyss
Low scde ‘a =>Compressed wavelet =>Rapidly changing details =>High Frequency (v)

High scale ‘a =>Stretched wavdet =>3owly changing, coarse features=>low freq (w)
The exact relaion between frequency and scaeis given in section 3.5

3.4 Shift ‘b’

Shifting awavelet Imply means delaying (or hastening) its onset. Mathematically,
delaying afunction f(t) by ‘b’ isrepresented by f(t-b) :

0 VﬂU un' - 0| \-"'nU u.*\‘_ .
Wavelet function Shifted wavelet function
Wit) wit—k)

fig 3.7 : Shifting awavelet

3.5 FiveEasy Stepsto a Continuous Wavelet Transform

The continuous wavelet trandorm is the sum over dl time of the sgnd multiplied by
scaded, shifted versons of the wavelet. This process produces wavelet coefficients that
are afunction of scale and pogition.
It's redly a very smple process. In fact, here are the five steps of an easy recipe for
creating a CWT:

1. Take awaveet and compare it to a section at the sart of the origind sgnd.
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2. Cdculate a number, C, that represents how closdly correlated the wavelet is
with this section of the dSgnd. The higher C is the more the smilaity. More
precisdy, if the sgnd energy and the wavelet energy are equa to one, C may be
interpreted as a correlation coefficient.

Note that the results will depend on the shape of the wavelet you choose.

>
é

Signal

Wil avelaet

+

O |

= 0.0102
fig 3.8 : Step #2 for cdculating CWT

3. Shift the wavelet to the right and repeat steps 1 and 2 until you've covered the
whole sgndl.

Signal

Wavelot |::>

fig 3.9: Step #3 for caculating CWT

I
-

4. Scale (stretch) the wavelet and repeat steps 1 through 3.
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Signal

Wavelat

C =0.2247

fig 3.10 : Step # 4 for caculating CWT

5. Repeat steps 1 through 4 for all scales.

When you're done, youll have the coefficients produced at different scaes by different
sections of the sgnal. The coefficients condtitute the results d a regresson of the origing
sgnd performed on the wavelets.

How to make sense of dl these coefficients? You could make a plot on which the xaxis
represents podtion dong the sgnd (time), the y-axis represents scale, and the color at
each x-y point represents the magnitude of the waveet coefficient C. An example is
shown below (black represents low magnitude and white is high magnitude)
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500 samples of x = 5"sin(5t)+3"sin(2t1+2"sin(f on [0,64]
True frequencies: [5 2 1]42"pil=-[0.796 0.318 0.159]

1120

(T

O

———

50 100 150 200 250 300 asa 400 450 500
Pssudo—frequencies =0.792 0317 0.158
Carresponding scaks =8 20 40

fig 3.11: A typicd scdogram (for demondration only)

3.6 How to Connect Scaleto Frequency?
The answer can only be given in a broad sense, and it's better to speak about the pseudo-

frequency corresponding to ascale.
A way to do it is to compute the center frequency Fc of the wavelet and to use the

following relationship:

where,
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aisascde.

D isthe sampling period.

Fc isthe center frequency of awaveet in Hz.

Fais the pseudo-frequency corresponding to the scale g, in Hz.

Theideaisto associate with a given wave et a purdly periodic sgnd of frequency Fc, i.e.
to approximate the wavelet by a snusoid. The frequency maximizing the FFT of the

waveet modulusis Fc.

The following figures display the plot of the wavelet dong with the associated
approximation based on the center frequency.

db2 db7

Waveled 952 (blue] and Cender requency based appraximeation Wavelet d57 {bluej and Center dequency based approximadion

II\'\
\ /
s
as 1 15 = 2.5 a a 2 4 (=] a 1a 12 14

Period: 1.5; Cent. Freq: 0 6657 Period: 1 4444: Cenl. Freq: 059231

coifi gausd

Wavelet gau=d (blu=j and Cenfer fequency based approzximation

Waveet coifl (BHoej and Cermler frequency bo==d appo=imafion

Period: 125; Cent. Freqg: 0.3 Perod: 2; Cenl. Freq: 0.5

fig 3.12 : Reation between scde and sinusoida frequency for some wavel et
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Asyou can see, the center frequency-based approximation captures the main wavelet
oscillations. So the center frequency is a convenient and smple characterization of the
leading dominant frequency of the wavelet.

If we accept to associate the frequency Fc to the wavelet function, then when the wavelet
isdilated by afactor a, this center frequency becomes Fc/ a Ladlly, if the underlying
sampling period is D, it is natura to associate to the scae a the frequency:

—_ A-F,

5 f

3.7 Example2.1revisited

In chapter 2 the weskness of FT was demondtrated with an example. We now consider
the same example, and show how waveet andyss disinguishes between the 2 different
dgnds and dso gives ther frequency content. The 2 Sgnds are repeated here for

convenience.
x1(t) = In(2*p* 100*t) 0<=t<0.lsec
= 9n(2*p*500*t) 0.1<=t<0.2 sec
x2(t) = dn(2*p*500*t) 0<=t<0.1sec
=d9n(Z2*p*100*t) 0.1<=t<0.2 sec

The fdlowing figures show the dgnds aong with ther waveet scdogram. Note the
scadograms of these 2 dgnds ae entirdly differently, enabling the waveet transform to
distinguish between the 2 Sgnds.
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fig 3.13 : x1(t) and its scalogram
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Analyzed Signal (length = 10000)
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fig 3.14 : x2(t) and its scalogram

The interpretation of the above scalograms to determine the exact frequency
components has been relegated to appendix. For now, it suffices to say that
WAVELET TRANSFORM IS A SUITABLE TOOL FOR THE ANALYSIS OF NON-
STATIONARY SIGNAL, ASISEVIDENCED BY THE ABOVE TWO DIAGRAMS.
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The computation of coefficients C(ab) for a continuum of vaues of ‘@ and ‘b’ to get
the continuous wavelet trandform is impracticad. The next chapter dedls with a more
practical quantity, the DISCRETE WAVELET TRANSFORM (DWT).

Before proceeding, the reader is well advised to have a strong foundation of CWT. A
detailed trestment can be found in the following literature.
1. Books: See# 10 in references.
2. Tutorid by Robi Polikar, in particular, tutorid 3(# 2 in reference in the section

1)
3. From section 11, review the materia givenin URLs 4 and 5.
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4THE DISCRETE WAVELET TRANSFORM (DWT)

ﬁ
INTRODUCTION
Cdculaing wavdet coefficients at every possble scde (for continuous WT) is a far

amount of work, and it generates an awful lot of data. What if we choose only a subset of
scaes and pogtions a which to make our calculations?

It turns out, rather remarkably, thet if we choose scales and positions based on powers of
two -- so-cdled dyadic scales and postions -- then our andyss will be much more
efficient and just as accurate. We obtain such an andyss from the discrete wavelet
transform (DWT).

An dffident way to implement this scheme using filters was developed in 1988 hy
Mdlat. The Madla dgorithm is in fact a casscd scheme known in the signa processng
community as a two-channed subband coder. This very practicd filtering dgorithm yields
a fast wavdet tranform -- a box into which ggnd passes, and out of which waveet
coefficients quickly emerge.

A discusson of MRA  (Multi-resolution andlyss or gpproximation) bridges the gap
between waved ets and the filter-bank implementation of DWT explained in this chepter.

Discussion of MRA isbeyond the scope of thisthesis. Interested readersarereferred
to

The book by Rao (references, section |, #10)

Tutorids 3 and 4 by Robi Polikar (references, section 11, #2)

Papersby SMalat' (References, section Il, #5 &6)

References, section 11, #4

A 0 DN P

1 We wish to mention here that S.Mallat is one of the brightest starsin the field of wavelets. His
papers have revolutionized the computation of DWT
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We directly begin our discusson with the formula of DWT and then veer towards the
decomposition of dgnd into approximation and detall coefficients. The filter banks used
to achieve this are aso discussed. The reverse process, i.e. recongruction of signal from
the coefficients is described later. Examples of haar, and dbl0 are used to demonstrate
the filter coefficients, frequency response of the low and high pass decompostion and

reconstruction filters.

This chapter forms the basis for the next chapter, which discusses compression.

41 DWT defined mathematically

The Discrete Wavelet Transform (DWT) involves choosing scales and
positions based on powers of two- the so called dyadic scales and
positions. The mother wavelet is rescaled or “dilated” by powers of two and
translated by integers. Specifically, a function f(t) T Lz (R) (defines space of

square integrable functions) can be represented as

f(t)—é édg K.y @t-K)+ aa(l_,k)f (2t-K)

The function vy (t) is known as the mother wavelet, while f (t) is known as

the scaling function. The set of functions
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(V2 f(2't- k)2 'y (2 't- K)..| JEL;j,k,LT Z} where Z is the set of

integers, is an orthonormal basis for L 2(R).

The numbers a(L, k) are known as the gpproximation coefficients a scde L, while
d(j,k) are known asthe detall coefficients at scaej.

These gpproximation and detail coefficients can be expressed as

a(L,k>=% BfOF (2 KA O . @2
d(j,k):% Of Y @-10d0 w3

The above 2 eguations give a mathematica relationship to compute the gpproximation
and detall coefficients.

This procedure is seldom adopted. A more practical approach is to use Mdlat's Fast
Wavdet Trandorm dgorithm. The Madla dgorithm for discrete wavdet transform
(DWT) is, in fact, a dasscd scheme in the signd processng community, known as a two
channel subband coder using conjugate quadrature filters or quadrature mirror filters

(QMPF). It isdeveloped in the following sections.
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4.2 One-Stage Filtering: Approximations and Details

For many dgnds, the low-frequency content is the most important part. It is what gives
the sgnd its identity. The high-frequency content, on the other hand, imparts flavor or
nuance. Condder the human voice If you remove the high-frequency components, the
voice sounds different, but you can 4ill tel what's being sad. However, if you remove

enough of the low-frequency components, you hear gibberish.
In wavelet andyds, we often spesk of gpproximations and detals. The approximations
are the high-scale, low-frequency components of the signd. The details are the low-scale,

high-frequency components.

The filtering process, a its most basic level, looks like this:

| - l
X Fiters |L—£
lowpass highpass

]

fig 4.1 . One stage filtering scheme producing the gpproximation and detail components
of thesignd

The origind dgnd, S, passes through two complementary filters and emerges as two
sgnds
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Unfortunately, if we actualy perform this operation on ared digitd sgnd, we wind up
with twice as much data as we started with. Suppose, for instance, that the original signa
S congsts of 1000 samples of data. Then the resulting signds will each have 1000
samples, for atotal of 2000.

These dgnds A and D are interesting, but we get 2000 vaues ingtead of the 1000 we had.
There exists a more subtle way to perform the decompostion usng waveets. By looking
caefully a the computation, we may keep only one point out of two in each of the two
2000-length samples to get the complete information. This is the notion of
downsampling. We produce two sequences called cA and cD.

— [+ D | ~1000 samples ——E—@— eD | ~500 coefs
S | 1000 samples S | 1000 samples
—*lDL—'- A | 1000 samples —E—-@— cA | =500 coefs

fig 4.2: Producing approximation and detail coefficients at the first level

The process on the right, which includes downsampling, produces DWT coefficients.

To gan a better appreciation of this process, let's perform a one-stage discrete wavelet
trandorm of a sgnd. Our sgnd will be a pure snusoid with high-frequency noise added
toit.

Hereis our schemdtic diagram with red sgnasinsarted into it:
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cD High Frequency

‘ LC@—wmwwww

S
1000 data points cA Low Frequency
~500 DWT coefficients

Fig4.3:Demondration of one-stage filtering scheme for producing agpproximation and
detail coefficient.

Notice that the detall coefficients cD are amdl and consst manly of a high-frequency
noise, while the gpproximation coefficients cA contan much less noise than does the

origind sgnd.

Note: You may observe that the actua lengths of the detall and approximation coefficient
vectors are dightly more than haf the length of the origind sgnd. This has to do with
the filtering process, which is implemented by convolving the sgnd with a filter. The

convolution "smears' the Sgnd, introducing severd extra samples into the result.

In this section, we consdered only one-stage decompostion of the sgnd into cA and cD
coefficient. This process can be repeated to get multiple-level decomposition, discussed
next.



4.3 Multiple-L evel Decomposition:
The decomposition process can be iterated, with successive

approximations being decomposed in turn, so that one signal is broken
down into many lower resolution components. This is called the wavelet

decomposition tree.

l CA1 I l GD1 I
Fig 4.4: Multiple

chuo clCia leve
y y decomposition tree
G.Aﬂ_ CD-’d

Looking at a signal's wavelet decomposition tree can yield valuable

information.

B Sy

CA—J CD-'J

fig 4.5 : Multiple level decomposition of a signal
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Number of Levels:

Since the andyss process is iterdive, in theory it can be continued indefinitely. In
redity, the decompostion can proceed only until the individud details consst of a single
sample or pixe. In practice, youll sdect a suitable rumber of levels based on the nature

of the sgnd, or on a suitable criterion such as entropy.

Thus the FAST WT ALGORITHM can be stated as:

Given a signal s of length N, the DWT consists of log,N stages at most.
Starting from s, the first step produces two sets of coefficients. approximation
coefficients cA;, and detail coefficients cD,. These vectors are obtained
by convolving s with the lowpass filter Lo_D for approximation, and with

the high-pass filter Hi_D for detail, followed by dyadic decimation.

The next step splits the approximation coefficients cA; in two parts using
the same scheme, replacing s by cA; and producing cA, and cD,, and so

on.

Now that we have seen the decomposition of a signal into wavelet
(approximation and detail) coefficients, it is natural to ask whether the
reverse is possible, i.e., is it possible to generate the original signal back

from the coefficients, and if yes, how to achieve this.
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Forturnately, there does exist a method to do it, and it is very similar to the

one used for decomposition. The next few sections demonstrate this.

4.4 \Wavelet Reconstruction

We've learned how the discrete wavelet transform can be used to analyze,
or decompose, signals and images. This process is called decomposition or
analysis. The other half of the story is how those components can be
assembled back into the original signal without loss of information. This
process is called reconstruction, or synthesis. The mathematical
manipulation that affects synthesis is called the inverse discrete wavelet

transform (IDWT).

To synthesize a signal, we reconstruct it from the wavelet coefficients:

Hl
H' ®— Ll': Fig 4.6: Scheme
for
4"@“‘ L = reconstructing
= sgnd from
—-@—' D_ wavdet
Ty coefficients

Where wavelet analysis involves filtering and downsampling, the wavelet
reconstruction process consists of upsampling and filtering. Upsampling is
the process of lengthening a signal component by inserting zeros between

samples:
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Signal component Upsampled signal component

fig 4.7 : The process of Upsampling

45 Reconstruction Filters

The filtering part of the reconstruction process also bears some discussion,
because it is the choice of filters that is crucial in achieving perfect
reconstruction of the original signal.

The downsampling of the sgnd components performed during the decomposition phase
introduces a digtortion cdled diasng. It turns out that by carefully choosing filters for the
decomposition and recongtruction phases that are closdy related (but not identica), we
can "cancd out" the effects of diasing.

The low-and high pass decomposition filters (L and H), together with their
associated reconstruction filters (L' and H'), form a system of what is called

quadrature mirror filters:
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Fig 4.8: Decomposition and recongtruction filtersillustrated

4.6 Reconstructing Approximations and Details

We have seen that it is possible to reconstruct our original signal from the

coefficients of the approximations and details.

Fig4.9:

Recongtruct

ion of

s | 1000sampies signdl from
approximat

ion and

cA @ LEE' details.
=500 coefs

Rl=

o —®D
=200 coels

It is also possible to reconstruct the approximations and details themselves
from their coefficient vectors. As an example, let's consider how we would

reconstruct the first-level approximation A1l from the coefficient vector cAl.
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We pass the coefficient vector cAl through the same process we used to
reconstruct the original signal. However, instead of combining it with the
level-one detail cD1, we feed in a vector of zeros in place of the detalil

coefficients vector:

H Fig 4.10:
o —()—LC Obtaining the
ey firg leved
M q:)proximaio
A1) 1000 sgmples n of the
—~ sgnd.
cAd «{ 1} %
=500 coefs

The process yields a reconstructed approximation Al, which has the same

length as the original signal S and which is a real approximation of it.

Similarly, we can reconstruct the first-level detail D1, using the analogous

process:

A - Fig 4.11: Obtaining th
~D1 1g4.11: aning the
i ‘;L' E first level detail of the
T CONSTS .

01] 1000 sampres
) 7 S
0 . %
e Faros
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The reconstructed details and approximations are true constituents of the

original signal. In fact, we find when we combine them that:

Note that the coefficient vectors cAl and cD1 -- because they were
produced by downsampling and are only half the length of the original
signal -- cannot directly be combined to reproduce the signal. It is
necessary to reconstruct the approximations and details before combining

them.

Extending this technique to the components of a multilevel analysis, we
find that similar relationships hold for all the reconstructed signal
constituents. That is, there are several ways to reassemble the original

signal:

Aq Dy S =Aq+Dy

Reconstructed |_ :
Signal As O
Components |_ _|

fig 4.12 : Relation between the signal and its components

4.7 Multistep Decomposition and Reconstruction
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A multistep analysis-synthesis process can be represented as:

~500

|—EH|"® . = (D—E
s ] 1000 r@@ﬂ — O~ 1000[$

LR L)
;%@—@ﬂ —®

Analysis Synthesis
Decun_iPusitiun Wavelet Reconstruction
DW Coefficients |DUU |

fig 4.13 : Multiple level analysis-synthesis process

This process involves two aspects: breaking up a signal to obtain the

wavelet coefficients, and assembling the signal from the coefficients.

We've already discussed decomposition and reconstruction at some length.
Of course, there is no point breaking up a signal merely to have the
satisfaction of immediately reconstructing it. We may modify the wavelet

coefficients before performing the reconstruction step.
We perform wavelet analysis because the coefficients thus obtained have

many known uses, de-noising and compression being foremost among

them.
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But wavelet analysis is still a new and emerging field. No doubt, many

uncharted uses of the wavelet coefficients lie in wait.

4.8 Haar and db2 decomposition and reconstruction filters

Having studied the implementation of DWT with the help of filter banks, it is naturd to
ak: how are thesefiltersimplemented ?

These filters are like any other FIR filters characterized by an impulse response. The
design of these filters is beyond the scope of this thedis. In this section we just present the
filter coefficients of the 4 filters namey, the low-pass and high-pass decomposition and
recongtruction filters for the haar and db2 waveets. These vadues are standardized and
have been plotted usng MATLABO. Along with this, frequency response of these filters
is aso provided.
1. haar:
Thefilter coefficientsare

a) Low pass decomposition filter: h(n)={ 0.7071, 0.7071}

b) High pass decomposition filter: h(n)={ -0.7071, 0.7071}

) Low passreconstruction filter: h(n)={ 0.7071, 0.7071}

d) High passreconstruction filter: h(n)={ 0.7071, -0.7071}
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Note that the reconstruction filters are same as decomposition filters for the low

pass filters. For the high-pass filters, the magnitude response will be same, as is

evidenced from the diagrams.

2.db2

Thefilter coefficientsare
a) L ow pass decomposition filter: h(n)={ -0.1294,0.2241,0.8365,0.4330}
b) High pass decomposition filter: h(n)={-0.4830,0.8365,-0.2241,-0.1294 }
c) Low passreconstruction filter: h(n)={ 0.4830,0.8365,0.2241,-0.1294}
d) High passrecongruction filter: h(n)={-0.1294,-0.2241,0.8365, -0.4830}

wavelet function scaling function
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SWAVELETSAND SPEECH COMPRESSION

-—————————el)

INTRODUCTION

The idea behind sgnd compresson usng waveets is primaily linked to the reative
scarceness of the wavelet domain representation for the signad. Wavelets concentrate
goeech information (energy and perception) into a few neighbouring coefficients.
Therefore as a result of taking the waveet trandform of a sgnd, many coefficients will
ether be zero or have negligible magnitudes.

Another factor that comes into picture is taken from psychoacoustic studies. Since our
eas ae more sendtive to low frequencies than high frequencies and our hearing
threshold is very high in the high frequency regions, we used a method for compression
by means of which the detall coefficients (corresponding to high frequency components)
of wavdet trandforms are thresholded such that the error due to thresholding is inaudible
to our ears.

Since some of the high frequency components are discarded, we should expect a

smoothened output Sgnd, asis shown in the following figure:
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fig 5.1 : Effect of compresson (smoothening of the sgnd)

In summary, the notion behind compresson is based on the concept that the regular
ggna component can be accuratdy approximated usng the following dements a smdl
number of gpproximation coefficients (at a suitably chosen leved) and some of the detall
coefficients

Daa compression is then achieved by treating smdl vdued coefficients as inggnificant

data and thus discarding them. The process of compressng a speech sgnd usng
wavdets involves a number of different stages, each of which is discussed below.
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5.1 Choiceof Wavelet

The choice of the mother-wavelet function used in designing high qudity speech coders
is of prime importance. Severd different criteria can be used in sdecting an optima
wavdet function. The objective is to minimize recondructed error variance and maximize
sgnd to noise ratio (SNR). In general optimum waveets can be sdected based on the
energy conservaion properties in the gpproximation part of the waveet coefficients. A
quiteble criterion for sdecting optimum mother wavedets is rdated to the amount of
energy a waveet bass function can concentrate into the levd 1 gpproximation
coefficients.

In chapter 7, several experiments are conducted and a suitable wavelet is suggested.

52 Wavelet Decomposition:

Wavelets work by decomposing a dgnd into different resolutions or frequency bands,
and this task is carried out by choosng the waveet function and computing the Discrete
Waveet Transform (DWT). Signd compression is based on the concept that sdlecting a
gmal number of gpproximation coefficients (at a suitably chosen level) and some of the
detal coefficients can accurately represent regular sgnd  components. Choosng a
decompostion leve for the DWT usudly depends on the type of sgna being andlyzed or
some other suitable criterion such as entropy. For the processng of speech sgnds
decomposition up to scale 5 is adequate, with no further advantage gained in processing
beyond scale 5. Thisfact is derived from the experiments described later in chapter 7.

5.3 Truncation of Coefficients:

After cdculating the waveet trandform of the gpeech signd, compresson involves

truncating wavelet coefficients bdow a threshold. From the experiments that we
conducted, we found that most of the coefficients have smal magnitudes. Spesking in
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generd terms, more than 90% of the wavelet coefficients were found to be insignificant,
and their truncation to zero made an imperceptible difference to the sgnd. This means
that mogt of the speech energy is in the high-vaued coefficients, which are few. Thus the
gmall vaued coefficients can be truncated or zeroed and then be used to recongtruct the
sgnd.

Two different approaches are available for caculating thresholds:
1.Global threshold:

It involves taking the wavelet expansion of the sgnd and keeping the
largest absolute value coefficients. In this case you can manudly set a

globa threshold, a compresson performance or a rative square norm

recovery peformance. Thus, only a single parameter needs to be

sdected. The coefficient values below this value should be set to zero,

to achieve compression.
The following figure shows the setting of globa threshold for atypical speech signd.
In this figure, the X-axis represents the coefficient vaues. (Since the sgnd samples are
normdized to 1 in MATLAB&, the coefficient vaues too ae normdized and the
maximum vaue is one). The black (dark) verticd line moves to right or left, thereby
changing the threshold. The intersection of this line with green line indicaies the
percentage of zero coefficients bedow this threshold. Its intersection with the red line
indicates the percentage of dgna energy retained after truncating these coefficients to

&0
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2. Level dependent thresholding: This goproach consss of gpplying visudly
determined level dependent thresholds to each decompostion level in the Wavelet
Trangform

The following figure shows the levd-dependent thresholding. The truncation of
indgnificant coefficients can be optimized when such a level dependent thresholding is
used
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54 Encoding

Signd compresson is achieved by fird truncating smadl-vaued coefficients and then
efficiently encoding them.

One way of representing the high-magnitude coefficients is to dtore the coefficients aong
with their respective pogtions in the wave et transform vector.

Another approach is the Run Length Encoding (RLE) wherein, the consecutive zero
vaued coefficients are replaced with two bytes. One byte to indicate a sequence of zeros
in the waveet tranforms vector and the second byte representing the number of
consecutive zeros. In the thesis, we have used a dightly different approach. The vector of
wavelet coefficient, after truncation, is encoded, and is replaced by 2 vectors. One vector
contains only the ggnificant coefficients, without any zero vaues between them. The
other vector gtores the starting postion of a string of zeros and the number of zeros in the
gring. Thus 2 bytes are needed for every string of zeros.

5.5 Performance M easures

1.Compression factor: It is the raio of the origind dgnd to the compressed signd. Of

course, for the compressed sgnd we have to take into account al the vaues that would
be needed to completely represent the sgnd. As has been explained in the previous
section, this thess implements encoding usng a modification of RLE wherein 2 vectors

are produced, we must take into account the combined length of these 2 vectors.

2.Retained signal _enerqy: This indicates the amount of energy retained in the

compressed 9gnd as a percentage of the energy of origind signdl.

When compressng using orthogond wavelets, the Retained energy in percentage  is
defined by:



100*(vector-norm(coeffs of the current dta*ol:nnp-::usil:itm,.?))2
2
)

(vector-norm(original signal,2)

3. Signal to noise ratio (SNR): This vadue gives the qudity of recondructed sgnd.
Higher the vaue, better. It isgiven by:

S
S 2

e

SNR =10log (—)

where sy and se are respectively the mean square of the speech sgnd and the mean

square difference between the origind and recongtructed signals.

4. Per centage of zero coefficient: It isgiven by the following rdation:

100* (number of zerosof thecurrent decomposition)
Number of coefficients

5.5ignal energy in the first level approximation: This quantity helps in the sdection of

gopropricte mother wavelet for compression. The higher the amount of energy in the first
level gpproximation, better is the wavelet for compression of that Sgndl.
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These parameters discussed in this section are calculated and displayed as output in the

oftware implementation of this work. The experimentation carried out in chapter 7 is
based entirdly on this.

Before we proceed, we present the flowchart for performing compression-reconstruction
using wavelet method:

56



SPEECH COMPRESSION-RECONSTRUCTION FLOWCHART

( START )

Read a
sound file

{

Perform wavelet
decomposition of the
sgnd a the specified

level

L

Sdlect athreshold and
truncate the coefficients
beow this threshold to

|

Use asuitable encoding
schemeto get rid of the

truncated coefficients

Storage/

Transmission

Decode the
stored/recelved

sgnd

Recongtruct the
samples of speech
ggnd fromthe
waveet

JL

Construct the sound
file from the
samples

|
(END)

57




6 IMPLEMENTATION IN MATLABa

el

INTRODUCTION

Having sudied the deps needed to perform speech compresson using the wavelet

goproach, it now remains to implement it MATLAB& veson 6.1 has numerous
functions and graphicd tools to achieve this. These have been exploited in our study of
wavelet and aso in the implementation of software for speech compression.

Recollect that the primary objective was to be able to store a sound file in the .wav
format as a compressed file occupying lesser disk space.

Hence this chapter explains each sep in the process, from reading a .wav file to the find
sving of another file of smdler sze but contaning sufficient data to recondruct the

origind sound file, with imperceptible degradation.

This chapter is organized as an dgorithm, with each section representing a step. The
MATLABA& functions used in the various steps are eaborated within the section.

6.1 Readingasound file

To compress a sound file, we fird need to take its samples into a vector. Let ‘y’ be the
vector. The command is

[y.fs,bps] = wavread(“path of the file”) ;
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This command gtores the samples of the sound file in the vector y. The term  ‘fS dtores
the sampling frequency of the file and ‘bps is the bits per sample. These 2 vaues are

needed to recondruct the .wav fileusing ‘wavwrite function.

6.2 Performing wavelet decomposition

The vector ‘y’ from the previous step is now decomposed using DWT into gpproximeation

and detail coefficients at various levds. The command is

[C.L] = wavedec(y,N,“"wname~);

where, N = number of decomposition levels.

“wname ” = name of the wavelet
The output decomposition structure contains the wavelet decomposition vector C and

the bookkeeping vector L. The dructure is organized as in the leva-3 decompostion
example shownin fig 6.1:
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Decomposition:

X
GA1 GD1
— cA; — cDy
cAg cDy ;
G thAg | cDg | oDy cDy
1 R
; ength of \lengthof |length of |length of | length
L chy | 7S] cDy | Dy | of X

fig 6.1 : Contents of C and L vectors

6.3 Perform Compression

The coefficient vector ‘C' computed in the previous step will now be compressed, i.e. the
inggnificant detail coefficdents will be truncated to zero.

Note that only detall coefficients will be truncated. Approximetion coefficients will not
be affected.
The syntax is.

[XC,CXC,LXC,PERFO,PERFL2] = wdencmp(~“gbl~,C,L,wlet,
decomplevel , thr,sorh,keepapp):;
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The various parameters used are described as follows:

1. I nputs (quantities on theright hand sde):

ghl

Indicates globd thresolding. Used ‘Ivd’ for level dependent
thresholding

C Wavelet coefficient vector (computed in step 2)
L Book-keeping vector (computed in step 2)

wlet Wavd et function used for decomposition in step 2

decompleve | The number of decompostion levels

thr The threshold vaue selected

sorh It indicates whether soft or hard thresholding is used. We have used

hard thresholding throughoui.
keepapp | Keep approximation coefficients? Vadue of ‘1’ indicates that

approximation coefficients are left unscathed in the truncation
operation.

2. Outputs (quantities on left hand side):

XC Gives the recongtructed signd after compression.
CXC Truncated coefficients vector
LXC Book keeping vector
PERFO | % of zero coefficients
PERF2 | Retained sgnd energy (in %)
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6.4 Encodethe CXC vector

An dgorithm was desgned and then implemented in MATLAB& for encoding the
coefficent vector. The program (M-file) was saved as ‘encodel.m’. The logic works as

follows

In the CXC vector, there are long strings of zeros. This CXC is replaced by 2 vectors, ‘y’
and ‘posnum’. The vector 'y’ will dore, in contiguous podgtions, only the non-zero
members of CXC.

The ‘posnum’ vector will store 2 numbers for each sring of zeros the firs number
storing the index of first zero of the streem of zeros, and the 2" number storing the

number of contiguous-zeros in the stream.

Example Le¢ CXC=[1,0,0,0,0,0,2,3,0,0,6,0,0,0,7]

Use the command
[y.posnum] = encodel(CXC) ;
When you give this command,
y = [1a21316a7]

posnum = [2,5,9,2,12,3]
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6.5 Decode

It isthe reverse of ‘encodel’. The M-fileis*‘decodel.m’ and the command is
Rx = decodel(y,posnum,N);
where,
Rx = reconstructed coefficient vector. Note this Rx =CXC of section 6.4.
N =Lengthof vector C(or CXC).

6.6 Reconstructing the signal from wavelet coefficients

The sgnd can be recondructed  from wave et coefficient at any level using ‘waverec
command. The syntax is

Y = waverec(C,L, wavelet”);

Note that in this case, perfect reconstruction is being performed, since‘C’ isused. In
actua compresson, itisthe ‘Rx’ vector that isused in placeof ‘C';

6.7 Speech Comparison GUI

The *SPEECH COMPRESSION GRAPHICAL USER INTERFACE (GUI)" included in

the CD has the aforementioned commands at its core. The design of GUI is beyond the

scope of thes's and depends to agreat extend on the programming skills and familiarity
of the user with MATLABA . The help documentation of MATLABA isavery good
darting point for a beginner.
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7 RESULTS

Foreword:

In chapter 5, many key issues regarding the compresson were merely stated. Primary
among them were the choice of wavdets and the number of decompostion levels In this
chapter, we conducted a series of daigicd andyss and arrived a some results which

can serve as aguide for selection of these parameters.

We have dso atempted to study the dependence of compresson on the sampling
frequency of the sgnd. Since human speech has dgnificant components only upto 4khz,
according Nyquist rule, minimum sampling frequency required is 8kHz which is dso the
minimum required representation for the dgnd. Increesng the sampling frequency
introduces redundant information, which will give more compresson. Readers ae
cautioned againgt being overzedous upon getting very high compresson factors when
using sgnaswith higher sampling rates. Such results are not indicative of generd trend.

We have consdered only haar, daubechies and the symlet families in our sudy. The
biorthogona wave ets have been completely excluded.

We performed a series of triad and errors on a few signas and arrived a an acceptable
figure for SNR (signd to noise ratio). We found this vaue to be 10dB. However, to have
safe margin, we took 12dB as the minimum SNR for the reconstructed sgna for getting
imperceptible degradation.

The threshold vadues used ae globd, as explaned in section 53. We used the
MATLAB& function ‘ddencmp’ to compute the threshold for the signd. However this
figure gives very consarvetive results Hence we multiply it by some scdar to incresse
the compresson factor. Concomitant of course is the reduction in  SNR.



STATISTICAL ANALYSS:

The rest of this chapter is the tabulation our observations. Some of the data common to
al the experiments are given on this page. Three experiments were conducted.

Test Signal 1: “A quick brown fox jumped over the lazy dog.”

Test signal 2: “ Twinkle twinkle little star, how | wonder what you are.”

Sampling frequency (Hz) Origind sgnd length
22050 66156
8000 23999
) _ Default threshold Default  threshold
Test sgnd Type of voice
(fs= 22kH2) (fs= 8kHz)
_ Mde 0.0027621 0.0049718
Testggnd 1
Femde 0.0008286 0.0019335
_ Mde 0.0011049 0.0024859
Test 9gnd 2
Femde 0.0022097 0.0044194

(CURRENT THRESHOLD = DEFAULT THR. X THR MULTIPLICATION
FACTOR)

65




EXPERIMENT 1: - To choose the optima wavelet for performing wave et transform of

the speech signd.

PROCEDURE:-

1.Load test Sgnd 1 (mde voice) having asampling frequency of 22kHz.
2.Run the software a a SNR of 12dB for decomposition levels of 4, 5 and 6 for the

following

wavdets-Haar,db2, 4, 6, 8, 10 and sym 1,2,4,6,8.

3.Repeat step 2 for test Sgnd 1 (mae voice) having a sampling frequency of 8kHz.
4.Repest step 2 for test Sgnd 1 (femae voice) having sampling frequencies of 22kHz

and 8kHz.
5. Tabulate the values.

OBSERVATIONS-

MALE VOICE (SAMPLING RATE = 22kHz):-

Levd 4-
Family Threshold % of zero | Sgnd energy in | Compression Retained
Multiplication | coefficients thefirg leve Factor sgnd energy
Factor approximation

Haar 18 93.428 98.993 10.940 93.857
db2 28 94.763 99.656 16.119 93.719
db4 34.4 94.979 99.742 17.727 93.702
db6 34.55 94.927 99.765 17.837 93.967
db8 37 94.880 99.773 17.851 93.742
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db10 41.3 94.853 99.776 17.992 93.723
syml 18.2 93.475 98.993 11.032 93.759
sym2 28 94.763 99.656 16.119 93.719
sym4 34.2 94.965 99.747 17.609 93.704
Sym6 34.9 94.939 99.765 17.880 93.871
sym3 385 94.916 99.772 18.061 93.728
Leve 5-
Family Threshold % of zero | Signd energy in | Compression Retained
Multiplication | coefficients thefirg leve Factor sgnd energy
Factor approximation
Haar 17 94.178 98.993 11.684 93.731
db2 25 95.769 99.656 17.779 93.719
db4 29.3 96.123 99.742 20.456 93.713
db6 30.05 96.186 99.765 21.102 93.726
db8 30.75 96.116 99.773 21.238 93.716
db10 31.7 96.181 99.776 21.606 93.693
syml 17 94.178 98.993 11.684 93.731
sym2 25 95.769 99.656 17.779 93.719
sym4 28.75 96.119 99.747 20.349 93.727
Sym6 30.2 96.180 99.765 20.823 93.696
sym3 31.25 96.193 99.772 21.055 93.726
Leve 6-
Family Threshold % of zero | Sgnd energy in | Compression Retained
Multiplication | coefficients thefirg leve Factor sgnd energy
Factor approximation
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Haar 16.75 94.483 98.993 11.697 93.812
db2 23.48 96.294 99.656 18.531 93.738
db4 27 96.734 99.742 21.935 93.696
db6 27.7 96.845 99.765 22.781 93.738
db8 27.9 96.791 99.773 22.859 93.700
db10 28.8 96.861 99.776 23.493 93.729
syml 16.9 94.483 98.993 11.697 93.812
sym2 235 96.299 99.656 18.547 93.722
ymd 26.5 96.707 90.747 21.705 93.714
Sym6 27.6 96.817 99.765 22.395 93.714
sym3 28.2 96.860 99.772 22.947 93.726
MALE VOICE (SAMPLING RATE = 8kHz)-
Levd 4-
Family Threshold % of zero | Sgnd enargy in | Compression Retained
Multiplication | coefficients thefird leve Factor signd energy
Factor approximation
Haar 7 86.438 94.418 4.824 93.925
db2 8.3 89.192 97.416 6.689 93.707
db4 9.1 90.315 98.156 7.805 93.711
db6 9.7 90.392 98.159 8.053 93.734
db8 9.58 90.357 98.206 8.179 93.709
db10 9.82 90.417 98.224 8.368 93.723
syml 7 86.438 94.418 4.824 93.925
sym2 8.25 89.162 97.416 6.661 93.748
sym4 9.4 90.219 98.145 7.815 93.733
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Sym6 9.55 90.346 98.205 8.069 93.704
sym3 10 90.548 98.214 8.309 93.719
Leve 5-
Family Threshold % of zero | Sgnd energy in | Compression Retained
Multiplication | coefficients thefirs leve Factor sgnd energy
Factor approximation
Haar 6.85 87.380 94.418 4.978 93.692
db2 7.85 90.175 97.416 6.839 93.704
db4 8.6 91.366 98.156 8.124 93.746
db6 9.2 91.469 98.159 8.415 93.729
db8 9.1 91.518 98.206 8.532 93.745
db10 9.23 91.653 98.224 8.866 93.706
syml 6.85 87.383 94.418 4.978 93.692
sym2 7.8 90.142 97.416 6.812 93.747
ymd 8.75 91.274 98.145 8.094 93.708
Sym6 9 91.481 98.205 8.394 93.730
sym3 9.15 91.729 98.214 8.752 93.747
Leve 6-
Family Threshold % of zero | Sgnd enargy in | Compression Retained
Multiplication | coefficients thefird leve Factor sgnd energy
Factor approximation
Haar 6.7 87.929 94.418 5.066 93.561
db2 7.6 90.743 97.416 6.946 93.753
db4 8.4 92.096 98.156 8.477 93.728
db6 8.9 92.316 98.159 8.912 93.729
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db8 8.85 92.428 98.206 9.108 93.709
db10 8.95 92.576 98.224 9.523 93.706
syml 6.67 87.858 94.418 5.050 93.626
sym2 7.65 90.772 97.416 6.952 93.718
sym4 8.45 91.984 98.145 8.388 93.701
Sym6 8.72 92.324 98.205 8.879 93.692
sym3 8.95 92.623 98.214 9.284 93.729

FEMALE VOICE (SAMPLING RATE = 22kHz):-
Levd 4-
Family Threshold % of zero | Sgnd enargy in | Compression Retained
Multiplication | coefficients thefird leve Factor sgnd energy
Factor gpproximeation

Haar 9 88.275 95.914 5.241 94.582

db2 9.185 91.305 97.375 7.664 93.738

db4 9.55 92.101 97.757 8.844 93.713

db6 9.8 92.211 97.822 9.131 93.703

db8 9.64 92.098 97.832 9.375 93.705
db10 0.88 92.188 97.826 9.162 93.698
syml 9 88.275 95.914 5.241 94.582
sym2 9.185 91.305 97.375 7.664 93.738
sym4 9.9 92.179 97.757 8.995 93.723
sym6 9.8 92.269 97.826 9.014 93.699
sym3 9.92 92.378 97.848 9.379 93.709

Leve 5-
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Family Threshold % of zero | Sgnd energy in | Compression Retained
Multiplication | coefficients thefird leve Factor sgnd energy
Factor gpproximeation
Haar 9 88.456 95.914 5.274 94.447
db2 9.1 91.622 97.375 7.622 93.703
db4 9.33 92.457 97.757 8.776 93.703
db6 9.59 92.614 97.822 9.079 93.695
db8 9.43 92.508 97.832 9.299 93.695
db10 9.61 92.598 97.826 9.152 93.698
syml 9 88.456 95.914 5.274 94.447
sym2 9.1 91.622 97.375 7.622 93.703
sym4 9.7 92.564 97.757 8.955 93.699
Sym6 9.56 92.666 97.826 8.962 93.692
sym3 9.68 92.788 97.848 9.361 93.696
Leve 6-
Family Threshold % of zero | Signd energy in | Compression Retained
Multiplication | coefficients thefirg leve Factor sgnd energy
Factor gpproximetion
Haar 9 88.638 95.914 5.294 94.387
db2 9.02 91.819 97.375 7.616 93.693
db4 9.26 92.667 97.757 8.783 93.692
db6 9.46 92.833 97.822 9.104 93.693
db8 9.33 92.751 97.832 9.316 93.691
db10 9.47 92.858 97.826 9.148 93.692
syml 9 88.638 95.914 5.294 94.387
sym2 9.02 91.819 97.375 7.616 93.693
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sym4 9.56 92.771 97.757 8.940 93.691
Sym6 9.47 92.896 97.826 8.997 93.692
sym3 9.52 93.036 97.848 9.376 93.694
FEMALE VOICE (SAMPLING RATE = 8kH2):-
Leve 4-
Family Threshold % of zero | Sgnd energy in | Compression Retained
Multiplication | coefficients thefirg leve Factor sgnd energy
Factor gpproximetion
Haar 2.858 82.320 85.482 3.612 92.328
db2 3.381 83.378 89.975 3.946 93.153
db4 3.409 83.793 91.119 3.975 93.699
db6 3.363 83.721 91.324 4.054 93.686
db8 3.429 83.753 91.619 4.166 93.686
db10 3.394 83.513 91.540 4.072 93.689
syml 2.858 82.320 85.482 3.612 92.328
sym2 3.380 83.378 89.975 3.946 93.153
sym4 3.380 83.718 91.062 4.042 93.679
Sym6 3.390 83.700 91.359 4.081 93.682
sym3 3.399 83.915 91.453 4.117 93.668
Leve 5-
Family Threshold % of zero | Sgnd energy in | Compression Retained
Multiplication | coefficients thefirs leve Factor sgnd energy
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Factor gpproximeation
Haar 2.857 82.771 85.482 3.646 92.157
db2 3.380 84.054 89.975 3.994 93.005
db4 3.354 84.334 91.119 3.973 93.695
db6 3.356 84.422 91.324 4.109 93.578
db8 3.358 84.423 91.619 4.188 93.693
db10 3.343 84.253 91.540 4.117 93.671
syml 2.859 82.771 85.482 3.646 92.157
sym2 3.381 84.054 89.975 3.994 93.005
sym4 3.335 84.251 91.062 4.041 93.688
Sym6 3.330 84.306 91.359 4.078 93.686
sym3 3.337 84.564 91.453 4.116 93.680
Leve 6-
Family Threshold % of zero | Signd energy in | Compression Retained
Multiplication | coefficients thefird leve Factor sgnd energy
Factor gpproximeation
Haar 2.858 83.4475 85.482 3.717 92.069
db2 3.380 83.464 89.975 3.601 94.008
db4 3.330 85.112 91.119 4.083 93.694
db6 3.299 85.152 91.324 4.204 93.681
db8 3.339 85.379 91.619 4.344 93.682
db10 3.315 85.243 91.540 4.251 93.679
syml 2.857 83.447 85.482 3.717 92.069
sym2 3.385 84.955 89.975 4.143 92.855
sym4 3.306 85.024 91.062 4.146 93.689
Sym6 3.301 85.181 91.359 4.199 93.684
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sym8

3.303 85.491 91.453 4.286 93.687

CONCLUSIONS-

1. Within a given family, compresson factor, threshold multiplication factor and %

of zero coefficients increases with increase in decompostion level a condant
SNR.
Considering compression factor and signd energy in 1% level gpproximation at a
given SNR=-

a) db10 and sym8 wavelets are best for mae speech signa

b) db8 and sym8 wavelets are best for female speech sgnd.

Haar, syml and dbl waveets show nearly smilar characterigsics for congtant
SNR.
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EXPERIMENT 2:- To find the optimum decompaosition level.

PROCEDURE:-
1.For tes Sgnd 1 a a threshold multiplication factor of 5, run the software for
decomposition levds 1 to 10 for dblO,sym6 and Haar wavelets a sampling
frequencies of 22kHz and 8kHz on mde and femde voices Tabulate the values of

SNR and compression factor.

OBSERVATIONS-

Sampling rate = 22kHz:-

Madevoice Femae voice
Level | SNR (dB) | Compression | SNR (dB) | Compression

factor factor
1 27.6566 3.0523 18.5334 3.2546
2 23.4328 5.0838 16.5411 4.1152
3 21.8954 6.7943 15.9036 4.4222
4 21.4316 7.8014 15.6949 4.5325
5 21.2537 8.1153 15.6406 4.554
6 21.1736 8.2468 15.6137 4.5761
7 21.1364 8.3152 15.5679 4.6533
8 21.098 8.4307 15.5443 4.6942
9 21.0807 8.455 15.529 4.7079
10 21.0769 8.4631 15.5239 4.7079
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Mae voice Femdevoice
Level | SNR (dB) | Compression | SNR (dB) | Compression
factor factor
1 27.4479 3.1185 18.1079 3.494
2 23.4272 5.1814 16.411 4.2692
3 21.8907 6.7396 15.8744 4.5192
4 21.4299 7.5954 15.699 4.6118
5 21.2468 7.8468 15.6441 4.6263
6 21.1755 7.9476 15.6179 4.6415
7 21.1484 7.9899 15.5701 4.6919
8 21.1092 8.0806 15.5443 4.7264
9 21.0912 8.1064 15.5303 4.7393
10 21.0809 8.1233 15.5243 4.739
Haar :
Mae voice Femdevoice
Leve | SNR (dB) | Compression | SNR(dB) | Compression
factor factor
1 22.5634 3.0498 2.7243
2 20.4174 4.0116 20.0044 2.9973
3 19.7622 4.3818 19.3497 2.9985
4 19.4602 4.5481 18.9258 3.0034
5 19.3808 4.5887 18.8462 3.0023
6 19.3341 4.6028 18.7766 3.004
7 19.3176 4.605 18.7289 3.0059
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8 19.2948 4.6147 18.7062 3.0055
9 19.2884 4.6182 18.6923 3.0048
10 19.2815 4.6182 18.6855 3.0041
Sampling rate = 8kHz:-
Mae voice Femde voice
Level | SNR (dB) | Compression | SNR (dB) | Compression
factor factor
1 19.6826 2.7835 12.8405 3.2252
2 16.7846 4.3278 10.7026 4.8004
3 16.1497 5.3421 9.9782 5.4874
4 15.7859 5.8599 9.6135 5.7298
5 15.5983 6.1152 9.3884 6.0489
6 15.4685 6.3869 9.3372 6.5028
7 15.4038 6.5508 9.3025 6.7821
8 15.3712 6.6212 9.2748 6.913
9 15.3566 6.6561 9.2534 6.9611
10 15.3465 6.6784 9.238 6.9652
Mae voice Femdevoice
Level | SNR (dB) | Compression | SNR (dB) | Compression
factor factor
1 19.5694 2.8663 12.8614 3.2875
2 16.7886 4.2868 10.7141 4.7746
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3 16.0433 5.2326 9.9952 5.4575
4 15.7033 5.6783 9.6255 5.6877
5 15.4977 5.8901 9.4522 5.9381
6 15.388 6.0657 9.4032 6.333
7 15.3342 6.2278 9.3689 6.5849
8 15.3102 6.2898 0.348 6.712
9 15.3008 6.318 9.3259 6.763
10 15.2954 6.3246 9.3164 6.7554
Haar -
Mae voice Femde voice
Level | SNR (dB) | Compression | SNR (dB) | Compression

factor factor
1 17.175 2.6719 12.5276 3.2174
2 15.2609 3.3673 10.2738 4.0144
3 14.7541 3.7046 9.4954 4.3115
4 14.4906 3.8707 9.2642 4.3919
5 14.3624 3.9445 9.0925 4.4948
6 14.2746 3.989 9.0247 4.6633
7 14.2316 4.0225 8.9865 4.7425
8 14.2121 4.0394 8.9597 4.7908
9 14.201 4.0428 8.937 4.81
10 14.196 4.0435 8.9321 4.8139
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CONCLUSION:-

For asampling frequency of 22kHz, no performance advantage is gained above
decomposition level 5 in terms of compression factor. The sameis observed for 8kHz
sampling frequency at leve 3.

Also a these leves, there was good dlarity in speech for male and femae voices.
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EXPERIMENT 3:- To observe the difference between mae and femae speech sgnds
and effect of threshold valueson it.

PROCEDURE:-

1.Run the software for dbl0 wavelet a decompostion level 5 for 22kHz and 8kHz on
two sets of mae and femae speech signds.

2.Tabulate the values of SNR and compression factor.

OBSERVATIONS:-

db10, Decomposition level-5, Sampling freq.-22kHz: -

Test 9gnd 1-
Current Maevoice Femde voice
Threshold SNR (dB) Compression SNR (dB) Compression
Factor Factor
0.0027 32.30 2.1 19.36 2.75
0.0138 21.25 8.11 9.36 14.86
0.0276 17.69 12.77 6.57 22.44
0.0414 15.70 15.94 4.80 27.29
0.0550 14.31 18.09 3.30 31.60
0.0690 13.16 19.84 2.34 35.33
0.0828 12.29 21.14 151 39.61
0.0966 11.52 22.31 0.996 42,51
0.1104 10.90 23.20 0.815 43.52
0.1242 10.10 24.34 0.67 44.13
0.1384 9.58 25.01 0.67 44.13
0.1658 8.49 26.57 0.67 44.13
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0.1932 7.63 27.80 0.67 44.13
0.220 6.68 29.31 0.67 44.13
0.276 5.55 3111 0.67 44.13
0.345 4.40 32.88 0.67 4413
0.414 3.31 34.96 0.67 44.13
0.483 2.72 36.05 0.67 4413
0.552 2.21 37.00 0.67 44.13
0.607 1.71 37.73 0.67 4413
0.690 1.24 38.68 0.67 44.13
0.800 1.20 38.75 0.67 4413
0.814 1.15 38.82 0.67 44.13
0.828 1.15 38.82 0.67 44.13
1.390 1.15 38.82 0.67 44.13

db10-5-22k speech-1
50 SNR(MALE)

L 40 +£ -
Q / COMPRESSION
= 30 T FACTOR(MALE)
o 20 —— SNR(FEMALE)
Z 10 N

0 : , — COMPRESSION

0 05 1 15 FACTOR(FEMALE)
THRESHOLD
Test sgnd 2-
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Current Mae voice Femde voice
Threshold SNR (dB) Compression SNR (dB) Compression
Factor Factor
0.0022 24.71 1.78 25.54 15
0.011 12.9 8.45 13.03 6.25
0.022 9.56 14.48 9.50 10.27
0.033 1.72 19.17 7.38 13.44
0.044 6.40 23.2 5.80 16.76
0.055 5.49 26.2 4.60 19.98
0.066 4.84 28.34 3.81 22.92
0.077 4.22 30.29 3.22 25.04
0.088 3.69 31.91 2.27 27.11
0.099 3.27 33.24 2.35 28.60
0.110 2.99 34.06 2.05 29.69
0.132 2.48 35.58 161 31.38
0.154 2.07 36.55 1.25 32.65
0.176 175 37.39 1.04 3331
0.209 1.56 37.80 0.94 33.54
0.220 1.56 37.80 0.827 33.77
0.275 1.56 37.80 0.827 33.77
0.330 1.56 37.80 0.827 33.77
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db10-5-22k

— SNR (MALE)

40
'-éJ — COMPRESSION
= 30 FACTOR (MALE)
7 20 ‘ /
s \ / SNR (FEMALE)
<§( 10 /
0 T T T
0 0.1 0.2 0.3 0.4 |— COMPRESSION
THRESHOLD FACTOR
(FEMALE)
db10, decomposition level — 5, Sampling rate— 8kHz: -
Test sgnd 1-
Maevoice Femde voice
Current
Compression Compression
Threshold SNR (dB) SNR (dB)
factor factor

0.004972 27.449 2.116 14.175 3.178
0.024859 15.599 6.115 3.993 14.219
0.049718 11.565 9.210 0.881 30.04
0.074577 9.231 11.322 0.177 37.386
0.099436 7.351 13.254 0.136 37.739
0.124295 5.683 16.251 0.136 37.739
0.149154 4.659 18.253 0.136 37.739
0.174013 3.629 20.567 0.136 37.739
0.198872 2.909 22.643 0.136 37.739
0.223731 2.055 26.405 0.136 37.739
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0.248590 1.502 29.023 0.136 37.739
0.298308 1.004 32.131 0.136 37.739
0.348026 0.741 33.853 0.136 37.739
0.397744 0.481 35.245 0.136 37.739
0.447462 0.452 35.401 0.136 37.739
0.497180 0.381 35.717 0.136 37.739
0.621475 0.195 36.367 0.136 37.739
0.745770 0.195 36.367 0.136 37.739
0.870065 0.195 36.367 0.136 37.739
0.994360 0.195 36.367 0.136 37.739
db10-5-8k speech-1
40
" / S SNR (MALE)
s 30 .
E o } / —— COMPRESSION
5 / FACTOR (MALE)
3 10 SNR (FEMALE)
01 ' ' — COMPRESSION
0 0.5 1 1.5 FACTOR (FEMALE)
THRESHOLD
Test sgnd 2-
Mde voice Femde voice
Current
Compression Compression
Threshold SNR (dB) P SNR (dB) g
factor factor




0.004419 17.819 2.150 18.662 1.792
0.022097 6.823 8.019 6.814 5.839
0.044194 3.320 16.565 2.657 13.747
0.066291 1.696 23.812 0.985 23.601
0.088388 0.856 29.523 0.411 28.205
0.110485 0.506 31.875 0.171 30.306
0.132582 0.278 33.336 0.094 30.851
0.154679 0.191 33.758 0.094 30.851
0.176776 0.149 33.901 0.094 30.851
0.198873 0.149 33.901 0.094 30.851
0.220970 0.149 33.901 0.094 30.851
0.265164 0.149 33.901 0.094 30.851
0.309358 0.149 33.901 0.094 30.851
0.353552 0.149 33.901 0.094 30.851
0.397746 0.149 33.901 0.094 30.851
0.441940 0.149 33.901 0.094 30.851
0.552425 0.149 33.901 0.094 30.851
0.662910 0.149 33.901 0.094 30.851
0.773395 0.149 33.901 0.094 30.851
0.883880 0.149 33.901 0.094 30.851
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db10-5-8k speech-1

40

/ SNR (MALE)
30
20 / / —— MALE)

10 \// SNR (FEMALE)
(
0

AMPLITUDE

' ' — COMPRESSION
0.5 1 15 FACTOR (FEMALE)

THRESHOLD

CONCLUSIONS:

1. It is observed that after some particular threshold value, the SNR and compression
factor doesn't change. This is because a this point dl the detail coefficients are truncated
to zero and only approximete coefficients remain.

2. Mde voices have rdaively more approximate coefficients than femae voices.

3.The threshold vaue required for complete detall truncation depends upon the amplitude
of the i/p speech sgnd.
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8 FURTHER STUDY
ﬁ

Thisthesswas, admittedly, limited in scope. The main objective was to develop an
appreciation for wavelet transforms, discuss their gpplication in compression of human
gpeech signals and study the effect of afew parameters on the quality of compression.
The parameters studied are: Sampling frequency, type of wavelet, threshold, maeffemde

voice.

There are afew topicsthat were deliberately excluded due to the limitation of our
undergraduate study. Some of them are stated below. Any or all of these topics can be

explored further with aview to achieving better performance.

The anadlyss that we undertook for waveletsincludes only the orthogona and compactly
supported wavelets. The reader may find it interesting to sudy the effect of other

wavelets on compression.

Secondly, the sound files that we tested were of limited duration, around 5 seconds.
Albeit the programs will run for larger files (of course, the computation time will be
longer in this case), a better approach towards such large filesis to use frames of finite
length. This procedure is more used in redl-time compression of sound files, and was not
discussed here.

Encoding is performed using only the Run Length Encoding. The effect of other

encoding schemes on the compression factor have not been studied. In fact, higher
compresson ratios are expected with coding techniques like Huffman coding.
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Thisthesis conddered only waveets andys's, wherein only gpproximation coefficients

are glit. There exists another andysis, called wavelet packet andysis, which splits detal
coefficients too. Thiswas not explored in this thes's.

Last but not the leadt, the effect of wavelet transform on voiced and unvoiced speech is
different®, and thus compression ratios ought to be different.

! See References, section 11, #3
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http://mwww.ecs.syr.edu/faculty/lewallelwave ets.html

91



